## **Appendix A: Soils in the watershed**

| Soil                                           | Acres  |
|------------------------------------------------|--------|
| Adrian muck                                    | 2432.7 |
| Algansee loamy sand, protected, 0 to 3% slopes | 1040.1 |
| Aquents and Histosols, ponded                  | 477.9  |
| Aquents, sandy and loamy                       | 61.2   |
| Belleville loamy sand                          | 228.7  |
| Belleville-Brookston complex                   | 54.7   |
| Blount silt loam, 1 to 4% slopes               | 450.6  |
| Brady sandy loam, 0 to 3% slopes               | 576.9  |
| Brookston loam                                 | 140.0  |
| Capac loam, 0 to 6% slopes                     | 3462.7 |
| Capac-Wixom complex, 1 to 4% slopes            | 339.3  |
| Chelsea loamy fine sand, 0 to 6% slopes        | 5274.5 |
| Chelsea loamy fine sand, 12 to 18% slopes      | 26.4   |
| Chelsea loamy fine sand, 18 to 30% slopes      | 1.8    |
| Chelsea loamy fine sand, 6 to 12% slopes       | 561.9  |
| Cohoctah silt loam                             | 191.0  |
| Cohoctah silt loam, protected                  | 289.8  |
| Colwood silt loam                              | 152.9  |
| Corunna sandy loam                             | 55.6   |
| Covert sand, 0 to 4% slopes                    | 3439.2 |
| Glendora loamy sand                            | 2628.8 |
| Glendora loamy sand, protected                 | 4126.1 |
| Glynwood clay loam, 1 to 6% slopes             | 39.8   |
| Glynwood clay loam, 6 to 12% slopes            | 2.7    |
| Granby loamy sand                              | 1987.2 |
| Houghton muck                                  | 1999.3 |
| Kibbie fine sandy loam, 0 to 3% slopes         | 191.0  |
| Marlette loam, 12 to 18% slopes                | 53.5   |
| Marlette loam, 18 to 35% slopes                | 14.4   |
| Marlette loam, 6 to 12% slopes                 | 395.7  |
| Marlette-Capac loams, 1 to 6% slopes           | 1128.5 |
| Martherton loam, 0 to 3% slopes                | 17.2   |
| Martisco muck                                  | 110.2  |
|                                                |        |

| Mariette Ioani, o to 1276 slopes       | 393.7   |
|----------------------------------------|---------|
| Marlette-Capac loams, 1 to 6% slopes   | 1128.5  |
| Martherton loam, 0 to 3% slopes        | 17.2    |
| Martisco muck                          | 110.2   |
| Metamora sandy loam, 1 to 4% slopes    | 434.3   |
| Metea loamy fine sand, 1 to 6% slopes  | 1589.5  |
| Metea loamy fine sand, 6 to 12% slopes | 174.3   |
| Morocco fine sand, 0 to 3% slopes      | 4429.0  |
| Morocco-Newton complex, 0 to 3% slopes | 4605.6  |
| Napoleon muck                          | 54.4    |
| Newton mucky fine sand                 | 1796.6  |
| Oakville fine sand, 0 to 6% slopes     | 16168.4 |
| Oakville fine sand, 18 to 45% slopes   | 18.5    |
| Oakville fine sand, 6 to 18% slopes    | 2663.0  |

|                                                      | 200.4  |
|------------------------------------------------------|--------|
| Oakville fine sand, loamy substratum, 0 to 6% slopes | 299.4  |
| Ockley loam, 1 to 6% slopes                          | 48.6   |
| Ockley loam, 18 to 30% slopes                        | 3.8    |
| Ockley loam, 6 to 12% slopes                         | 12.4   |
| Oshtemo-Chelsea complex, 0 to 6% slopes              | 2081.4 |
| Oshtemo-Chelsea complex, 12 to 18% slopes            | 94.2   |
| Oshtemo-Chelsea complex, 18 to 35% slopes            | 70.2   |
| Oshtemo-Chelsea complex, 6 to 12% slopes             | 527.1  |
| Palms muck                                           | 216.7  |
| Pewamo silt loam                                     | 48.2   |
| Pipestone sand, 0 to 4 percent slopes                | 3154.6 |
| Pits                                                 | 67.8   |
| Riddles loam, 1 to 6% slopes                         | 119.4  |
| Riddles loam, 6 to 12% slopes                        | 1.4    |
| Rimer loamy sand, 0 to 4% slopes                     | 2877.6 |
| Sebewa loam                                          | 109.9  |
| Seward loamy fine sand, 1 to 6% slopes               | 1075.1 |
| Sloan silt loam                                      | 64.1   |
| Tedrow fine sand, 0 to 4% slopes                     | 1053.7 |
| Tekenink loamy fine sand, 12 to 18% slopes           | 6.5    |
| Tekenink loamy fine sand, 2 to 6% slopes             | 351.9  |
| Tekenink loamy fine sand, 6 to 12% slopes            | 76.9   |
| Thetford loamy fine sand, 0 to 4% slopes             | 2982.2 |
| Udipsamments, nearly level to gently sloping         | 53.6   |
| Water                                                | 1129.5 |

Soils in the Van Buren portion of the watershed

| Soil                                | Acres   |
|-------------------------------------|---------|
| Adrian muck                         | 783.5   |
| Algansee-Cohoctah complex           | 4376.2  |
| Aquents and Histosols, ponded       | 628.1   |
| Belleville loamy sand               | 1286.4  |
| Blount silt loam, 0 to 4% slopes    | 2659.6  |
| Brems sand, 0 to 2% slopes          | 4214.2  |
| Bronson sandy loam, 0 to 3% slopes  | 763.3   |
| Capac loam, 1 to 5% slopes          | 10208.2 |
| Coloma loamy sand, 0 to 6% slopes   | 3843.3  |
| Coloma loamy sand, 6 to 12% slopes  | 1743.4  |
| Colwood silt loam                   | 3340.2  |
| Covert sand, 0 to 4% slopes         | 675.8   |
| Edwards muck                        | 346.5   |
| Gilford sandy loam                  | 2185.2  |
| Glendora sandy loam                 | 1787.0  |
| Grattan sand, 0 to 6 percent slopes | 218.7   |
| Houghton muck                       | 4757.0  |
| Kalamazoo loam, 2 to 6% slopes      | 35.9    |
| Kalamazoo loam, 6 to 12% slopes     | 98.8    |
| Kingsville loamy sand               | 4839.5  |

| Matherton loam, 0 to 2% slopes               | 634.1   |
|----------------------------------------------|---------|
| Metea loamy fine sand, 1 to 6% slopes        | 2207.6  |
| Metea loamy fine sand, 6 to 12% slopes       | 515.9   |
| Morocco loamy sand, 0 to 2% slopes           | 2336.5  |
| Napoleon mucky peat                          | 277.1   |
| Oakville fine sand, 2 to 12% slopes          | 33.7    |
| Oakville fine sand, 25 to 60% slopes         | 1.4     |
| Ormas loamy sand, 0 to 6% slopes             | 228.3   |
| Ormas loamy sand, 6 to 12% slopes            | 27.2    |
| Oshtemo sandy loam, 0 to 6% slopes           | 498.4   |
| Oshtemo sandy loam, 6 to 12% slopes          | 183.2   |
| Oshtemo-Coloma loamy sands, 12 to 18% slopes | 438.4   |
| Oshtemo-Coloma loamy sands, 18 to 25% slopes | 248.8   |
| Ottokee loamy fine sand, 0 to 3% slopes      | 1461.4  |
| Palms muck                                   | 977.8   |
| Pewamo silt clay loam                        | 607.0   |
| Pipestone-Kingsville complex, 0 to 3% slopes | 8593.6  |
| Pits                                         | 76.0    |
| Plainfield sand, 0 to 6% slopes              | 3107.3  |
| Plainfield sand, 6 to 12% slopes             | 633.0   |
| Riddles sandy loam, 1 to 6% slopes           | 4083.0  |
| Riddles sandy loam, 12 to 18% slopes         | 471.6   |
| Riddles sandy loam, 18 to 25% slopes         | 141.9   |
| Riddles sandy loam, 6 to 12% slopes          | 1887.5  |
| Selfridge loamy sand, 0 to 3% slopes         | 12921.1 |
| Sloan loam                                   | 2147.8  |
| Spinks loamy sand, 0 to 6% slopes            | 1800.3  |
| Spinks loamy sand, 6 to 12% slopes           | 372.6   |
| Spinks-Oshtemo complex, 0 to 6% slopes       | 38.3    |
| Spinks-Oshtemo complex, 6 to 12% slopes      | 229.1   |
| Thetford loamy sand, 0 to 2% slopes          | 2692.1  |
| Tuscola silt loam, 0 to 4% slopes            | 1674.5  |
| Udipsamments and Udorthents, 0 to 4% slopes  | 383.7   |
| Urban land - Brems complex, 0 to 4% slopes   | 301.0   |
| Urban land - Coloma complex, 0 to 6% slopes  | 240.2   |
| Water                                        | 1841.0  |

| Name                                          | Township              | County    | Acres | Connected to<br>Black River? |
|-----------------------------------------------|-----------------------|-----------|-------|------------------------------|
| Abernathy Lake                                | Waverly               | Van Buren | 4.1   | Yes                          |
| Clear Lake                                    | Lee                   | Allegan   | 19.7  | No                           |
| Coffee Lake                                   | Columbia              | Van Buren | 40.4  | Yes                          |
| Crooked Lake                                  | Clyde                 | Allegan   | 96.9  | No                           |
| Deer Lake                                     | Columbia              | Van Buren | 30.4  | Yes                          |
| Ely Lake                                      | Clyde                 | Allegan   | 27.0  | Yes                          |
| Great Bear Lake                               | Bloomingdale/Columbia | Van Buren | 166.2 | Yes                          |
| Hutchins Lake                                 | Ganges/Clyde          | Allegan   | 378.8 | Yes                          |
| Lake Eleven                                   | Columbia              | Van Buren | 53.9  | Yes                          |
| Lake Fourteen                                 | Arlington             | Van Buren | 20.9  | Yes                          |
| Lake Fourteen                                 | Columbia              | Van Buren | 69.5  | Yes                          |
| Lester Lake                                   | Lee                   | Allegan   | 60.4  | Yes                          |
| Little Bear Lake                              | Columbia              | Van Buren | 46.1  | Maybe/Wetland                |
| Little Tom Lake                               | Clyde                 | Allegan   | 18.1  | Maybe/Wetland                |
| Lower Jeptha Lake                             | Columbia              | Van Buren | 55.4  | Yes                          |
| Lower Scott Lake                              | Lee                   | Allegan   | 119.5 | Yes                          |
| Manitt Lake                                   | Casco                 | Allegan   | 0.7   | No                           |
| Max Lake                                      | Bloomingdale          | Van Buren | 28.0  | Yes                          |
| Max Lake                                      | Waverly               | Van Buren | 4.4   | Yes                          |
| Merriman Lake                                 | Bangor                | Van Buren | 27.1  | Yes                          |
| Mill Lake                                     | Bloomingdale          | Van Buren | 107.0 | Yes                          |
| Moon Lake                                     | Geneva                | Van Buren | 14.6  | Yes                          |
| Moriah Lake                                   | Columbia              | Van Buren | 17.0  | Yes                          |
| Mud Lake                                      | Cheshire              | Allegan   | 3.9   | Yes                          |
| Mud Lake                                      | Clyde                 | Allegan   | 4.4   | No                           |
| Mud Lake                                      | Columbia              | Van Buren | 23.4  | Yes                          |
| Munn Lake                                     | Bloomingdale          | Van Buren | 12.3  | Yes                          |
| Munson Lake                                   | Columbia              | Van Buren | 38.5  | No                           |
| North Lake                                    | Columbia              | Van Buren | 60.6  | Yes                          |
| North Scott Lake                              | Arlington/Columbia    | Van Buren | 76.3  | Yes                          |
| Osterhout Lake                                | Lee                   | Allegan   | 171.9 | Yes                          |
| Picture Lake                                  | Geneva                | Van Buren | 5.0   | Yes                          |
| S. Branch Black River (Bangor Mill Pond)      | Bangor/Arlington      | Van Buren | 22.7  | Yes                          |
| S. Branch Black River (Breedsville Mill Pond) | Columbia              | Van Buren | 7.9   | Yes                          |
| Saddle Lake                                   | Columbia              | Van Buren | 282.5 | Yes                          |
| School Section Lake                           | Bangor                | Van Buren | 36.1  | Yes                          |
| Silver Lake                                   | Columbia              | Van Buren | 50.1  | Yes                          |
| Skunk Lake                                    | Bloomingdale          | Van Buren | 6.6   | Yes                          |
| South Scott Lake                              | Arlington             | Van Buren | 118.1 | Yes                          |
| Spring Brook Lake                             | Lee                   | Allegan   | 15.3  | Yes                          |
| Stillwell Lake                                | Columbia              | Van Buren | 18.3  | Yes                          |
| Upper Jeptha Lake                             | Columbia              | Van Buren | 58.8  | Yes                          |
| Upper Scott Lake                              | Lee                   | Allegan   | 94.4  | Yes                          |

## Appendix B: Lakes in the Black River Watershed

Data source: Michigan Center for Geographic Information, 2003

## **Appendix C: Dams in the Black River Watershed**

|                                |           |         | Year  | Fish      |                                    |
|--------------------------------|-----------|---------|-------|-----------|------------------------------------|
| Dam Name                       | County    | Owner   | Built | Passable? | River or stream name               |
| Saddle Lk. Level Control       |           |         |       |           |                                    |
| Structure                      | Van Buren | Private | 1932  | No        | Barber Creek                       |
| Great Bear Lk. Level Control   |           | Local   |       |           |                                    |
| Structure                      | Van Buren | Govt.   | 1964  | Yes       | Black River                        |
| Yacht Harbor Dam               | Allegan   | Private |       | No        | Black River                        |
| Lower Scott Lk. Dam            | Allegan   | Private | 1920  | No        | Lower Scott Lake Creek             |
| Black River Dam (Hamlin Dam)   | Allegan   | Private | 1967  | No        | N. Branch Black River              |
|                                |           | Local   |       |           |                                    |
| Bangor Dam                     | Van Buren | Govt.   | 1975  | No        | S. Branch Black River              |
|                                |           | Local   |       |           |                                    |
| Breedsville Dam                | Van Buren | Govt.   | 1837  | No        | S. Branch Black River              |
| Denofrio's Pond Dam            | Allegan   | Private |       | No        | Spicebush Creek                    |
| Scott Lk. Level Control        |           | Local   |       |           |                                    |
| Structure                      | Van Buren | Govt.   | 1967  | No        | Tributary to Black River           |
| Harry Dam                      | Allegan   | Private | 1968  | No        | Tributary to Black River           |
| Osterhout Lk. Level Control    |           |         |       |           |                                    |
| Structure                      | Allegan   | Private | 1975  | No        | Tributary to Black River           |
| Lafler Dam                     | Van Buren | Private | 1958  |           | Tributary to Black River           |
| Effner Dam                     | Van Buren | Private | 1967  |           | Tributary to Great Bear Lake       |
| Ely Lk. Flooding Dam           | Allegan   | State   | 1985  |           | Tributary to Utter Drain           |
| Barden Dam                     | Allegan   | Private | 1963  | No        | Tributary to N. Branch Black River |
| Crooked Lk. Dam (Structure #4) | Allegan   | State   | 1962  | No        | Utter Drain                        |
| Surprenant Dam                 | Allegan   | Private | 1964  | No        | Wolf Drain                         |

# **Appendix D: List of Species**

| Name                         | Туре |
|------------------------------|------|
| American Crow                | Bird |
| American Goldfinch           | Bird |
| American Kestrel             | Bird |
| American Redstart            | Bird |
| American Robin               | Bird |
| American Tree Sparrow        | Bird |
| Bald Eagle                   | Bird |
| Baltimore Oriole             | Bird |
| Bank Swallow                 | Bird |
| Barn Swallow                 | Bird |
| Belted Kingfisher            | Bird |
| Black and White Warbler      | Bird |
| Black Tern                   | Bird |
| Blackburnian Warbler         | Bird |
| Black-capped chickadee       | Bird |
| Blackpoll Warbler            | Bird |
| Black-throated Green Warbler | Bird |
| Blue Jay                     | Bird |
| Blue-gray gnatcatcher        | Bird |
| Blue-winged Teal             | Bird |
| Blue-winged Warbler          | Bird |
| Bobolink                     | Bird |
| Bonaparte's Gull             | Bird |
| Brown Thrasher               | Bird |
| Brown-headed Cowbird         | Bird |
| Bufflehead                   | Bird |
| Canada Goose                 | Bird |
| Cape May Warbler             | Bird |
| Cedar Waxwing                | Bird |
| Cerulean Warbler             | Bird |
| Chimney Swift                | Bird |
| Chipping Sparrow             | Bird |
| Cliff Swallow                | Bird |
| Common Grackle               | Bird |
| Common Loon                  | Bird |
| Common Snipe                 | Bird |
| Common Yellowthroat          | Bird |
| Cooper's Hawk                | Bird |
| Cuckoo spp.                  | Bird |
| Downy Woodpecker             | Bird |
| Eastern Bluebird             | Bird |
| Eastern Kingbird             | Bird |
| Eastern Meadowlark           | Bird |
| Eastern Phoebe               | Bird |
| Eastern Screech Owl          | Bird |
|                              | Dird |

| Eastern Towhee                | Bird |
|-------------------------------|------|
| Eastern Wood Pewee            | Bird |
| European Starling             | Bird |
| Falcon spp.                   | Bird |
| Field Sparrow                 | Bird |
| Grackles                      | Bird |
| Gray Catbird                  | Bird |
| Great Blue Heron              | Bird |
| Great Crested Flycatcher      | Bird |
| Great Egret                   | Bird |
| Great Horned Owl              | Bird |
| Green Heron                   | Bird |
|                               |      |
| Herring gull                  | Bird |
| House Finch                   | Bird |
| House Sparrow                 | Bird |
| House Wren                    | Bird |
| Indigo Bunting                | Bird |
| Killdeer                      | Bird |
| Lesser Scaup                  | Bird |
| Lincoln's Sparrow             | Bird |
| Louisiana Waterthrush         | Bird |
| Magnolia Warbler              | Bird |
| Mallard                       | Bird |
| Mourning Dove                 | Bird |
| Mute Swan                     | Bird |
| Nashville Warbler             | Bird |
| Northern Bobwhite             | Bird |
| Northern Cardinal             | Bird |
| Northern Flicker              | Bird |
| Northern Harrier              | Bird |
| Northern Rough-winged Swallow | Bird |
| Northern Shoveler             | Bird |
| Northern Waterthrush          | Bird |
| Osprey                        | Bird |
| Ovenbird                      | Bird |
| Palm Warbler                  | Bird |
| Pied-billed Grebe             | Bird |
| Pileated Woodpecker           | Bird |
| Purple Martin                 | Bird |
| Red-bellied Woodpecker        | Bird |
| Red-breasted Merganser        | Bird |
| Red-eyed Vireo                | Bird |
| Red-shouldered Hawk           | Bird |
| Red-tailed Hawk               | Bird |
| Red-winged Blackbird          | Bird |
| Ring-billed Gull              | Bird |
| <u> </u>                      | 2114 |

| Ring-necked duck                   | Bird      |
|------------------------------------|-----------|
| Ring-necked Pheasant               | Bird      |
| Rock Dove                          | Bird      |
| Rose-breasted Grosbeak             | Bird      |
| Ruby-crowned Kinglet               |           |
|                                    | Bird      |
| Ruby-throated Hummingbird          | Bird      |
| Ruffed Grouse                      | Bird      |
| Sandhill Crane                     | Bird      |
| Sandpiper sp                       | Bird      |
| Savannah Sparrow                   | Bird      |
| Scarlet Tanager                    | Bird      |
| Sedge Wren                         | Bird      |
| Short-eared Owl                    | Bird      |
| Solitary Sandpiper                 | Bird      |
| Song Sparrow                       | Bird      |
| Sora                               | Bird      |
| Spotted Sandpiper                  | Bird      |
| Swainson's Thrush                  | Bird      |
| Tennessee Warbler                  | Bird      |
| Tern sp                            | Bird      |
| Tree Swallow                       | Bird      |
| Tufted Titmouse                    | Bird      |
| Turkey Vulture                     | Bird      |
| Upland Sandpiper                   | Bird      |
| Veery                              | Bird      |
| Vesper Sparrow                     | Bird      |
| Warbling Vireo                     | Bird      |
| White-breasted nuthatch            | Bird      |
| White-throated Sparrow             | Bird      |
| Wild Turkey                        | Bird      |
| Willow Flycatcher                  | Bird      |
| Wood Duck                          | Bird      |
| Wood Thrush                        | Bird      |
| Woodcock                           | Bird      |
| Yellow Warbler                     | Bird      |
| Yellow-bellied Sapsucker           | Bird      |
| Yellow-billed cuckoo               | Bird      |
| Yellow-rumped Warbler              | Bird      |
| Yellow-throated Vireo              | Bird      |
| Appalachian Brown                  | Butterfly |
| Azure, Spring                      | Butterfly |
| Cabbage White                      | Butterfly |
| Common Buckeye                     | Butterfly |
| Eastern-tailed Blue                | -         |
|                                    | Butterfly |
| Eyed Brown<br>Fritillary Aphrodite | Butterfly |
| Fritillary, Aphrodite              | Butterfly |
| Fritillary, Great Spangled         | Butterfly |
| Fritillary, Silver-bordered        | Butterfly |

|                            | 1         |
|----------------------------|-----------|
| Fritillary, Varigated      | Butterfly |
| Little Wood Satyr          | Butterfly |
| Monarch                    | Butterfly |
| Mourning Cloak             | Butterfly |
| Northern Broken Dash       | Butterfly |
| Pearl Crecent              | Butterfly |
| Red Admiral                | Butterfly |
| Red-spotted Purple         | Butterfly |
| Sulphur, Clouded           | Butterfly |
| Sulphur, Orange            | Butterfly |
| Swallowtail, Black         | Butterfly |
| Swallowtail, Eastern Tiger | Butterfly |
| Swallowtail, Spicebush     | Butterfly |
| Swallowtail, Zebra         | Butterfly |
| Viceroy                    | Butterfly |
| Wood Nymph, Common         | Butterfly |
| Clam                       | Clam      |
| Damselfly, Ebony           | Damselfly |
| Variable Dancer            | Damselfly |
| Black Saddlebags           | Dragonfly |
| Meadowhawk, Ruby           | Dragonfly |
| Pennant, Calico            | Dragonfly |
| Pennant, Halloween         | Dragonfly |
| Pondhawk, Eastern          | Dragonfly |
| Skimmer, 12-spotted        | Dragonfly |
| Skimmer, Widow             | Dragonfly |
| Whitetail, Common          | Dragonfly |
| Alewife                    | Fish      |
| American brook lamprey     | Fish      |
| Black bullhead             | Fish      |
| Black crappie              | Fish      |
| Blackchin shiner           | Fish      |
| Blacknose dace             | Fish      |
| Blacknose shiner           | Fish      |
| Blackside darter           | Fish      |
| Bluegill                   | Fish      |
| Bluntnose minnow           | Fish      |
| Bowfin                     | Fish      |
| Brassy minnow              | Fish      |
| Brook silverside           | Fish      |
| Brook stickleback          | Fish      |
| Brook trout                | Fish      |
| Brown bullhead             | Fish      |
| Brown Trout                | Fish      |
| Carp                       | Fish      |
| Central mudminnow          | Fish      |
| Channel catfish            | Fish      |
| Chestnut lamprey           | Fish      |
| Chestilut tampicy          | 1 1511    |

| Chinook salmon           | Fish |
|--------------------------|------|
| Common Carp              | Fish |
| Common shiner            | Fish |
| Creek chub               | Fish |
| Emerald shiner           | Fish |
| Freshwater Drum          | Fish |
| Gizzard Shad             | Fish |
| Golden Redhorse          | Fish |
| Golden shiner            | Fish |
| Grass pickerel           | Fish |
| Greater redhorse         | Fish |
| Green sunfish            | Fish |
| Hornyhead chub           | Fish |
| Iowa darter              | Fish |
| Johnny darter            | Fish |
| Jonny darter             | Fish |
| Lake chubsucker          | Fish |
| Largemouth bass          | Fish |
| Logperch                 | Fish |
| Longnose dace            | Fish |
| Longnose sucker          | Fish |
| Long-nosed Gar           | Fish |
| Mottled sculpin          | Fish |
| Muskellunge              | Fish |
| Northern brook lamprey   | Fish |
| Northern hogsucker       | Fish |
| Northern longear sunfish | Fish |
| Northern pike            | Fish |
| Pirate perch             | Fish |
| Pugnose shiner           | Fish |
| Pumpkinseed              | Fish |
| Rainbow darter           | Fish |
| Rainbow Trout/ Steelhead | Fish |
| Rockbass                 | Fish |
| round goby               | Fish |
| Sand shiner              | Fish |
| Sea lamprey              | Fish |
| Shorthead redhorse       | Fish |
| Smallmouth bass          | Fish |
| Spotfin shiner           | Fish |
| Spottail shiner          | Fish |
| Spotted gar              | Fish |
| Spotted sucker           | Fish |
| Stonecat                 | Fish |
| Striped shiner           | Fish |
| Tadpole madtom           | Fish |
| Tiger Muskellunge        | Fish |
| Walleye                  | Fish |
|                          |      |

| Warmouth                      | Fish   |
|-------------------------------|--------|
| Wainfording White sucker      | Fish   |
| Yellow bullhead               | Fish   |
| Yellow perch                  | Fish   |
| Bullfrog                      | Frog   |
|                               |        |
| Eastern Gray Treefrog         | Frog   |
| Green Frog                    | Frog   |
| Northern Leopard Frog         | Frog   |
| Northern Spring Peeper        | Frog   |
| Western Chorus Frog           | Frog   |
| Wood Frog                     | Frog   |
| Water Striders                | Insect |
| Eastern Chipmunk              | Mammal |
| Eastern Cottontail            | Mammal |
| Fox Squirrel                  | Mammal |
| Meadow Jumping Mouse          | Mammal |
| Muskrat                       | Mammal |
| Opossum                       | Mammal |
| Raccoon                       | Mammal |
| White-tailed Deer             | Mammal |
| Woodchuck                     | Mammal |
| Mapleleaf (Quadrula quadrula) | Mussel |
| Agalinis, Slender             | Plant  |
| Agrimony, Tall Hairy          | Plant  |
| Alder, Speckled               | Plant  |
| Alumroot                      | Plant  |
| American Bellflower           | Plant  |
| Amur River Privet             | Plant  |
| Anemone, Wood                 | Plant  |
| Angelica                      | Plant  |
| Arrow Arum                    | Plant  |
| Arrowglass, Slender           | Plant  |
| Arrowhead, Common (Wapato)    | Plant  |
| Ash, Black                    | Plant  |
| Ash, Prickly                  | Plant  |
| Ash, Red                      | Plant  |
| Ash, White                    | Plant  |
| Asparagus, Garden             | Plant  |
| Aspen sp                      | Plant  |
| Aspen, Large-toothed          | Plant  |
| Aster, Flat-topped            | Plant  |
| Aster, Lake Ontario           | Plant  |
| Aster, Large-leaved           | Plant  |
| Aster, Panicled               | Plant  |
| Aster, Purple-stemmed         | Plant  |
| Aster, Side-flowering         | Plant  |
| Autumn Olive                  | Plant  |
| Avens, White                  |        |
| 2110113, 11 III C             | Plant  |

| Baneberry, Red                        | Plant   |
|---------------------------------------|---------|
| Baneberry, White                      | Plant   |
| Bartonia                              | Plant   |
| Basswood                              | Plant   |
| Beaked willow                         | Plant   |
| Beak-Rush                             | Plant   |
| Bebb's Sedge                          | Plant   |
| Bedstraw                              | Plant   |
| Bedstraw, Fragrant                    | Plant   |
| Bedstraw, Stiff Marsh                 | Plant   |
| Beech, American                       | Plant   |
| Beechdrops                            | Plant   |
| Beggar-ticks, Leafy-bracted           | Plant   |
| Bellflower, Marsh                     | Plant   |
| Bellwort, Perfoliate                  |         |
| · · · · · · · · · · · · · · · · · · · | Plant   |
| Bergamot<br>Bindwood Hodgo            | Plant   |
| Bindweed, Hedge                       | Plant   |
| Birch, Yellow                         | Plant   |
| Bittercress, Hairy                    | Plant   |
| Bittercress, Pennsylvanian            | Plant   |
| Bittersweet, Oriental                 | Plant   |
| Black Willow                          | Plant   |
| Blackberry, Common                    | Plant   |
| Black-eyed Susan                      | Plant   |
| Bladderwort, Flat-leaved              | Plant   |
| Blazing Star, Marsh (Dense)           | Plant   |
| Blue Flag Iris                        | Plant   |
| Blue Flag, Southern                   | Plant   |
| Blueberry sp                          | Plant   |
| Blueberry, Highbush                   | Plant   |
| Blueberry, Highbush                   | Plant   |
| Blueberry, Hillside                   | Plant   |
| Blue-joint                            | Plant   |
| Blunt Broom Sedge                     | Plant   |
| Boneset, Common                       | Plant   |
| Bottle Brush Sedge                    | Plant   |
| Bottlebrush Grass                     | Plant   |
| Brambles                              | Plant   |
| Bright-green Spike-rush               | Plant   |
| British Soldiers                      | Plant   |
| Brome sp                              | Plant   |
| Broom-sedge                           | Plant   |
| Brown-eyed susan                      | Plant   |
| Buckthorn, Alder-leaved               | Plant   |
| Bugleweed, Northern                   | Plant   |
| Bulrush, Dark-green                   | Plant   |
| Bur-Marigold, Nodding                 | Plant   |
| Buttercup, Small-flowered             | Plant   |
| Buttereup, Sman-nowereu               | 1 Iallt |

| Butternut                 | Plant   |
|---------------------------|---------|
| Button Bush               | Plant   |
| Canada Bluegrass          | Plant   |
| Canadian St. John's-wort  | Plant   |
| Capillary Beak-rush       | Plant   |
| Cardinal Flower           |         |
| Cat's-ear                 | Plant   |
|                           | Plant   |
| Cattail, Common           | Plant   |
| Centaury, Forking         | Plant   |
| Chiefwerd Management      | Plant   |
| Chickweed, Mouse-eared    | Plant   |
| Chokeberry, Black         | Plant   |
| Cicely, Sweet             | Plant   |
| Ciliate-leaved Paspalum   | Plant   |
| Cinquefoil, Common        | Plant   |
| Cinquefoil, Rough-fruited | Plant   |
| Cinquefoil, Shrubby       | Plant   |
| Clearweed                 | Plant   |
| Clover, Little Hop        | Plant   |
| Clover, Red               | Plant   |
| Club Moss, spp            | Plant   |
| Clubmoss, Stiff           | Plant   |
| Common Flat Brocade Moss  | Plant   |
| Coontail                  | Plant   |
| Coral-root, Autumn        | Plant   |
| Coral-root, Spotted       | Plant   |
| Cottonwood, Eastern       | Plant   |
| Cress, Common Winter      | Plant   |
| Cress, Spring             | Plant   |
| Cress, Water              | Plant   |
| Crowfoot, Hooked          | Plant   |
| Cucumber Root, Indian     | Plant   |
| Currant sp.               | Plant   |
| Cushion Moss              | Plant   |
| Daisy, Ox-eye             | Plant   |
| Dandelion, Common         | Plant   |
| Day-Lily, Canada          | Plant   |
| Delicate Fern Moss        | Plant   |
| Dewberry sp               | Plant   |
| Dissected Grape Fern      | Plant   |
| Dock, Curly               | Plant   |
| Dodder, Common            | Plant   |
| Dogbane, Spreading        | Plant   |
| Dogwood, Alternate-leaved | Plant   |
| Dogwood, Flowering        | Plant   |
| Dogwood, Gray             | Plant   |
| Dogwood, Gray             | Plant   |
| Dogwood, Pale             | Plant   |
|                           | 1 10111 |

| Dogwood, Red Osier            | Plant          |
|-------------------------------|----------------|
| Dryad Saddle                  | Plant          |
| Duckweed, Lesser              | Plant          |
| Dutchman's Breeches           | Plant          |
| Dwarf Raspberry               | Plant          |
| Eastern Red Cedar             | Plant          |
| Elder, Common                 | Plant          |
| Elder, Red-berried            | Plant          |
| Elm sp                        | Plant          |
| Elm, American                 | Plant          |
| Elm, Siberian                 | Plant          |
| Enchanter's Nightshade        | Plant          |
| Fern Evergreen Wood           | Plant          |
| Fern, Bracken                 | Plant          |
| Fern, Cinnamon                | Plant          |
| Fern, Clinton's Wood          | Plant          |
| Fern, Grape                   | Plant          |
| Fern, Lady                    | Plant          |
| Fern, Marsh Shield            | Plant          |
| Fern, New York                | Plant          |
| Fern, Rattlesnake             | Plant          |
| Fern, Royal                   | Plant          |
| Fern, Sensitive               | Plant          |
| Fern, Shield                  | Plant          |
| Fern, Spinulose Wood          | Plant          |
| Figwort, Eastern              | Plant          |
| Flat-tufted Feather Moss      | Plant          |
| Flax, Wild                    | Plant          |
| Fleabane, Annual              | Plant          |
| Fleabane, Daisy               | Plant          |
| Fly Agaric                    | Plant          |
| Four Tooth Moss               | Plant          |
| Fox Sedge                     | Plant          |
| Foxglove Beard-tongue         | Plant          |
| Fungus                        | Plant          |
| Fungus                        | Plant          |
| Fungus                        | Plant          |
| Garlic mustard                | Plant          |
| Gerardia, Purple              | Plant          |
| Giant Reed Grass              | Plant          |
| Ginseng, Large                | Plant          |
| Golden Ragwort                | Plant          |
| Goldenrod, Canada             | Plant          |
| Goldenrod, Common Flat-topped | Plant          |
| Goldenrod, Ohio               | Plant          |
| Goldenrod, Rough-leaved       |                |
| Goldenrod, Rough-stemmed      | Plant<br>Plant |
|                               | Plant          |
| Goldenrod, Tall               | Plant          |

| Goldthread                      | Plant |
|---------------------------------|-------|
| Gooseberry sp.                  | Plant |
| Gooseberry, Prickly             | Plant |
| Graceful Sedge                  | Plant |
|                                 |       |
| Grape Fern, Leather             | Plant |
| Grape, Fox                      | Plant |
| Grape, River-bank               | Plant |
| Grape, Wild                     | Plant |
| Grass, Blue-eyed                | Plant |
| Grass, Cut                      | Plant |
| Grass, Deer-tongue              | Plant |
| Grass, Fowl Manna               | Plant |
| Grass, Orchard                  | Plant |
| Grass, Reed Canary              | Plant |
| Grass-pink                      | Plant |
| Green Dragon                    | Plant |
| Green Sedge                     | Plant |
| Green Silk Moss                 | Plant |
| Greenbrier sp                   | Plant |
| Greenbrier, Bristly             | Plant |
| Green-headed coneflower         | Plant |
| Ground Cedar                    | Plant |
| Ground-cherry, Clammy           | Plant |
| Groundsel, Common               | Plant |
| Gum, Sour                       | Plant |
| Hardstem Bulrush                | Plant |
| Hawkweed, Orange                | Plant |
| Hawthorn sp                     | Plant |
| Hemlock, Eastern                | Plant |
| Hepatica, Round-lobed           |       |
|                                 | Plant |
| Hickory sp                      | Plant |
| Hickory, Pignut                 | Plant |
| Highbush Cranberry              | Plant |
| Hog Peanut                      | Plant |
| Honewort                        | Plant |
| Honeysuckle, Glaucous           | Plant |
| Hornbeam, American (Blue-beech) | Plant |
| Hornbeam, Hop                   | Plant |
| Horse-nettle                    | Plant |
| Horsetail                       | Plant |
| Horsetail, Field                | Plant |
| Horsetail, Meadow               | Plant |
| Indian-hemp                     | Plant |
| Inland Sedge                    | Plant |
| Iris, Yellow                    | Plant |
| Ironweed, Missouri              | Plant |
| Ivy, Poison                     | Plant |
|                                 | •     |

# Appendix E: List of Fish Species

| Name                   | Status     |
|------------------------|------------|
| Alewife                | introduced |
| American brook lamprey | common     |
| Black bullhead         | present    |
| Black crappie          | common     |
| Blackchin shiner       | common     |
| Blacknose shiner       | common     |
| Blacknose dace         | present    |
| Blackside darter       | present    |
| Bluegill               | common     |
| Bowfin                 | common     |
| Bluntnose minnow       | present    |
| Brassy minnow          | present    |
| Brook stickleback      | present    |
| Brook silverside       | present    |
| Brook trout            | rare       |
| Brown Trout            | introduced |
| Brown bullhead         | common     |
| Central mudminnow      | common     |
| Channel catfish        | present    |
| Chestnut lamprey       | present    |
| Chinook salmon         | introduced |
| Common Carp            | introduced |
| Common shiner          | common     |
| Creek chub             | present    |
| Emerald shiner         | present    |
| Freshwater Drum        | present    |
| Gizzard Shad           | present    |
| Golden Redhorse        | common     |
| Golden shiner          | present    |
| Grass pickerel         | present    |
| Greater redhorse       | present    |
| Green sunfish          | common     |
| Hornyhead chub         | common     |
| Iowa darter            | present    |
| Johnny darter          | common     |
| Lake chubsucker        | present    |

| Largemouth bass        | common     |
|------------------------|------------|
| Logperch               | common     |
| Longnose dace          | present    |
| Longnose sucker        | present    |
| Mottled sculpin        | present    |
| Muskellunge            | introduced |
| Northern brook lamprey | common     |
| Northern hogsucker     | present    |
| Northern               |            |
| longear sunfish        | present    |
| Northern pike          | common     |
| Pirate perch           | rare       |
| Pugnose shiner         | rare       |
| Pumpkinseed            | common     |
| Rainbow Trout/         |            |
| Steelhead              | introduced |
| Rainbow darter         | present    |
| Rockbass               | common     |
| round goby             | introduced |
| Sand shiner            | unknown    |
| Sea lamprey            | introduced |
| Shorthead redhorse     | common     |
| Smallmouth bass        | common     |
| Spotfin shiner         | present    |
| Spottail shiner        | present    |
| Spotted gar            | present    |
| Spotted sucker         | rare       |
| Stonecat               | unknown    |
| Striped shiner         | rare       |
| Tadpole madtom         | rare       |
| Tiger Muskellunge      | introduced |
| Walleye                | common     |
| Warmouth               | common     |
| White sucker           | common     |
| Yellow bullhead        | common     |
| Yellow perch           | common     |
| ·                      |            |

# **Appendix F: Threatened, Endangered, and Special Concern Species and Communities in the Black River Watershed**

| Scientific Name               | Common Name                            | Federal<br>Status | State<br>Status | Туре      |
|-------------------------------|----------------------------------------|-------------------|-----------------|-----------|
| Acris crepitans blanchardi    | Blanchard's Cricket Frog               |                   | SC              | Animal    |
| Clemmys guttata               | Spotted Turtle                         |                   | Т               | Animal    |
| Elaphe obsoleta obsoleta      | Black Rat Snake                        |                   | SC              | Animal    |
| Emys blandingii               | Blanding's Turtle                      |                   | SC              | Animal    |
| Erynnis persius persius       | Persius Duskywing                      |                   | Т               | Animal    |
| Ictiobus niger                | Black Buffalo                          |                   | SC              | Animal    |
| Incisalia irus                | Frosted Elfin                          |                   | Т               | Animal    |
| Lanius ludovicianus migrans   | Migrant Loggerhead Shrike              |                   | Е               | Animal    |
| Lycaeides melissa samuelis    | Karner Blue                            | LE                | Т               | Animal    |
| Microtus pinetorum            | Woodland Vole                          |                   | SC              | Animal    |
| Notropis anogenus             | Pugnose Shiner                         |                   | SC              | Animal    |
| Notropis texanus              | Weed Shiner                            |                   | Х               | Animal    |
| Sistrurus catenatus catenatus | Eastern Massasauga                     | С                 | SC              | Animal    |
| Terrapene carolina carolina   | Eastern Box Turtle                     |                   | SC              | Animal    |
| Coastal plain marsh           | Infertile Pond/marsh, Great Lakes Type |                   |                 | Community |
| Great blue heron rookery      | Great Blue Heron Rookery               |                   |                 | Other     |
| Adlumia fungosa               | Climbing Fumitory                      |                   | SC              | Plant     |
| Agrimonia rostellata          | Beaked Agrimony                        |                   | SC              | Plant     |
| Carex albolutescens           | Greenish-white Sedge                   |                   | Т               | Plant     |
| Carex festucacea              | Fescue Sedge                           |                   | SC              | Plant     |
| Cyperus flavescens            | Yellow Nut-grass                       |                   | SC              | Plant     |
| Eleocharis melanocarpa        | Black-fruited Spike-rush               |                   | SC              | Plant     |
| Eleocharis microcarpa         | Small-fruited Spike-rush               |                   | Е               | Plant     |
| Eleocharis tricostata         | Three-ribbed Spike-rush                |                   | Т               | Plant     |
| Fuirena squarrosa             | Umbrella-grass                         |                   | Т               | Plant     |
| Hemicarpha micrantha          | Dwarf-bulrush                          |                   | SC              | Plant     |
| Hibiscus moscheutos           | Swamp Rose-mallow                      |                   | SC              | Plant     |
| Hydrastis canadensis          | Goldenseal                             |                   | Т               | Plant     |
| Linum virginianum             | Virginia Flax                          |                   | Т               | Plant     |
| Ludwigia alternifolia         | Seedbox                                |                   | SC              | Plant     |
| Lycopodium appressum          | Northern Prostrate Clubmoss            |                   | SC              | Plant     |
| Panax quinquefolius           | Ginseng                                |                   | Т               | Plant     |
| Platanthera ciliaris          | Orange or Yellow Fringed Orchid        |                   | Т               | Plant     |
| Polygala cruciata             | Cross-leaved Milkwort                  |                   | SC              | Plant     |
| Polygonum careyi              | Carey's Smartweed                      |                   | Т               | Plant     |
| Populus heterophylla          | Swamp or Black Cottonwood              |                   | Е               | Plant     |
| Potamogeton bicupulatus       | Waterthread Pondweed                   |                   | Т               | Plant     |
| Psilocarya scirpoides         | Bald-rush                              |                   | Т               | Plant     |
| Pygarctia spraguei            | Sprague's Pygarctia                    |                   | SC              | Plant     |
| Rhexia virginica              | Meadow-beauty                          |                   | SC              | Plant     |
| Rhynchospora macrostachya     | Tall Beak-rush                         |                   | SC              | Plant     |
| Rotala ramosior               | Tooth-cup                              |                   | SC              | Plant     |
| Scirpus torreyi               | Torrey's Bulrush                       |                   | SC              | Plant     |
| Scleria reticularis           | Netted Nut-rush                        |                   | T               | Plant     |
| Sisyrinchium atlanticum       | Atlantic Blue-eyed-grass               |                   | T               | Plant     |

|   | Strophostyles helvula                                                    | Trailing Wild Bean |  | SC | Plant |
|---|--------------------------------------------------------------------------|--------------------|--|----|-------|
| - | LE: Listed Endangered                                                    |                    |  |    |       |
|   | C: Candidate for federal status under the Endangered Species Act of 1998 |                    |  |    |       |

SC: Special concern

T: Threatened

E: Endangered

X: Probably Extirpated Source: Michigan Natural Features Inventory, 2003

Appendix G: Black River Watershed land protection priority model & agricultural land protection model

## Southwest Michigan Land Conservancy

**Black River Watershed Project** 

Emily Wilke, Geoffrey Cripe Land Protection Staff 6851 S. Sprinkle Road Portage, MI 49002

| Table of Contents                 | Page |
|-----------------------------------|------|
| Overview/ Scope of Work           | 3    |
| Background                        | 3    |
| Land Protection Subcommittee      | 3    |
| Natural Resources Based GIS Model | 4    |
| Priority Conservation Areas       | 5    |
| Agricultural Model                | 7    |
| Outreach                          | 12   |
| Landowner Contacts                | 12   |
| Summary                           | 13   |

#### **Overview/Scope of Work**

In 2006, the Southwest Michigan Land Conservancy (SWMLC) was contracted by the Van Buren County Conservation District (VBCD) under the authority of the Michigan Department of Environmental Quality (MDEQ) to initiate educational outreach for landowners within the Black River Watershed in pursuit of private land conservation objectives. SWMLC assembled a land protection subcommittee and started developing criteria for a geographic information systems (GIS) model that would identify priority areas for land protection in the Black River Watershed (BRW). Properties that exhibited high conservation values, based on the existence of natural resources that sustain the functionality of the BRW, were then targeted for the educational outreach program. SWMLC held two educational workshops in 2008 and drew approximately 30 interested landowners. Many interested landowners that received our mailing but could not attend one of the workshops contacted SWMLC for more information about land conservation. SWMLC also presented at many other workshops throughout the BRW about land conservation. Using the model as a guide, SWMLC will continue outreach efforts and will pursue leads with the goal of protecting valuable lands within the watershed in perpetuity.

#### Background

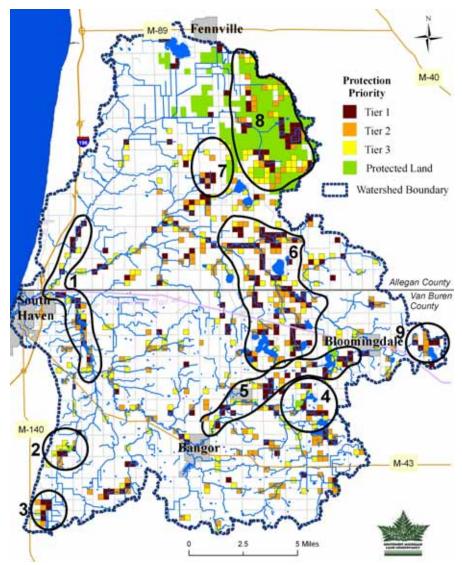
The BRW encompasses 287 square miles (183,490 acres) across two counties and 13 townships. The Watershed contains 530 miles of rivers, streams, and drains, 43 large named lakes (the largest is Hutchins Lake), and over 500 small lakes and ponds. The high quality waters support 70 species of fish, 130 species of birds, and 471 species of plants as of recorded in 2004. More then half of the land in the watershed is agriculture planted in unique crops such as blueberries. The MDEQ recognized that this watershed is an important area for conservation and environmental education and awareness to protect these significant resources. SWMLC focused its conservation efforts on the identification of land parcels containing ecologically significant property that should be conserved to maintain the high water quality of the Black River. These properties contain high ground water recharge, riparian habitat, forested wetlands, emergent wetlands and a variety of habitats that provide valuable habitat and ensure the continuation of a viable watershed ecosystem.

#### Land Protection Subcommittee

A group of citizen volunteers, government officials, and regional experts was asked to assist SWMLC in formulating a list of criteria, based on property attributes, to use in the development of a GIS model. Over the course of the last three years, eight meetings were held with the Land Protection Subcommittee to coordinate the model, ground truth the model, develop and distribute outreach materials, and engage citizens in the pursuit of BRW objectives during educational workshops. The subcommittee played a major role in the identification of sites within the watershed in need of priority consideration and the development of detailed criteria that would enable the model to be a success. Participants on the subcommittee included:

| Name & Years<br>Participated | Affiliation                          | E-mail                       |
|------------------------------|--------------------------------------|------------------------------|
| Baerren, Al<br>2006-2008     | Silver Lake Association              | albert.baerren@nmcco.com     |
| Boutin, Carl<br>2006-2008    | Van Buren County Resident            | cbouton@btc-bci.com          |
| Clemons, Tina<br>2006-2007   | Allegan County Conservation District | tina.clemons@mi.nacdnet.net  |
| Debruyn, Jay<br>2006-2007    | Realtor, Developer in South Haven    | jay@shoresofsouthhaven.com   |
| Fuller, Erin<br>2006-2008    | Black River Watershed Coordinator    | erin.fuller@mi.nacdnet.net   |
| Haas, Greg<br>2006-2007      | Casco Township Parks Committee       | haas310@hotmail.com          |
| Kirkwood, Julia<br>2006-2008 | Department of Environmental Quality  | <u>kirkwooj@michigan.gov</u> |

| Lerg, John<br>2006-2008      | Michigan Department of Natural Resources | <u>lergj@michigan.gov</u>   |
|------------------------------|------------------------------------------|-----------------------------|
| Lockhart, Amy<br>2006-2008   | Van Buren County Conservation District   | amy.lockhart@mi.nacdnet.net |
| Mead, Eileen<br>2006-2008    | Casco Township Parks Committee           | dennyeileen@aol.com         |
| Micklin, Phil<br>2006-2008   | Southwest Michigan Land Conservancy      | micklin@wmich.edu           |
| Nielson, Larry<br>2006-2007  | Bangor City Manager                      | bangormi@btc-bci.com        |
| Parman, Joe<br>2006-2008     | Van Buren County Drain Commissioner      | parmanj@vbco.org            |
| Sass, George<br>2006-2008    | South Haven Resident                     | sassgsass@lodisnet.com      |
| Soltysiak, Dawn<br>2006-2007 | Artist, Fennville Resident               | gangesdawn@ispwest.com      |
| Matthews, Peter 2007-2008    | Van Buren County Resident                | canoenut@bciwildblue.com    |
| Thomas, Art<br>2006-2007     | Farmer, Van Buren County                 | blueone234@hotmail.com      |
| Venner, Rob<br>2006-2007     | DeGraaf Nature Center                    | r.venner@cityofholland.com  |
| Wilke, Emily<br>2006-2008    | Southwest Michigan Land Conservancy      | ewilke@SWMLC.org            |


#### **Natural Resources Based GIS Model**

The model itself contains four "priority" tiers based on conservation value. In total, 233 quarter-quarter sections (Q-Q's) were identified as highest priority. The model was constructed by adding numerical ratings for a number of different conservation criteria to each Q-Q section in the BRW. Combining the values for each criterion allowed for the ranking of the Q-Q sections on the basis of conservation priority. The procedure for creating the model comprised the following steps:

- Creation of a quarter-quarter section base layer dataset.
- Creation and classification of a dataset for each conservation criterion decided by the Sub-Committee.
- Addition of data for each criterion as attributes to the base layer dataset.
- Classification (if necessary) of each criterion attribute in the model's database file (DBF) table.
- Weighting of each criterion class for each Q-Q section.
- Computation of the conservation value of each quarter-quarter section.
- Testing of outcomes against DOQ (aerial imagery), parcel data and other digital resources.
- Ground truthing the results by driving around the watershed.
- Classification and symbolization of the outcome for display in a map.

To date, the model has been accurate where highest-priority areas have been ground-truthed for verification. The attached map shows the final priority layer or "dataset" composed of priority Q-Q's and identifies the resulting nine SWMLC target areas which are circled. The following section summarizes the conservation attributes of each of the circled priority conservation areas as determined by the GIS model.

**Priority Conservation Areas** 



**Corridor**. 1,480 acres of forested river corridor and adjacent forested wetlands. This relatively unfragmented forested river corridor is a buffer from the development along the lakeshore and sprawl from the city of South Haven. The forested river corridor is important breeding habitat for many bird species. Loss of this habitat type would have a major impact on the bird species that depend on river corridors for food and

**Forested River** 

1.

corridors for food and nesting. Riparian forests also play a critical role in water quality by preventing erosion and pollutants from entering the streams and providing shade for benthic macroinvertebrates, which are food for fish.

#### 2. Expanding

**Preserves**. 400 acres of high-priority natural land adjacent to 45 acres already conserved by SWMLC (Wintergreen Woods and Winterberry Woods preserves). This area is notable for its extensive wetlands of various types

including forested, scrub-shrub, and emergent. Northern species, including eastern hemlock and magnolia warblers, are found in this area because the wetlands and back ridges stay very cool. Eastern hemlocks grow in the wetlands on the north facing side of the dunes and spotted salamanders cool off in the pools of water below the trees. This area has high groundwater recharge where currently high quality water is moving directly into the aquifer. Historically this area consisted of hemlock- white pine forest along the river and adjacent beech-sugar maple forest.

3. **Forested Wetlands**. 400 acres of forested wetlands near the Lake Michigan coast provides many benefits to wildlife. These forested wetlands contain the state-threatened swamp cottonwood and spotted turtle. This is a threatened ecosystem type along the highly developed coastline. The pre-European settlement land cover map shows that this area was historically a mixed conifer swamp with a section of black ash swamp.

4. **Upper and Lower Jeptha Lakes**. 720 acres of high-quality wetlands, marl flats, lakes with little development, and SWMLC's 50-acre Jeptha Lake Fen preserve. The Jeptha lakes are along a flight route for migratory birds and a haven for waterfowl. Other species of interest found in this area include the state-threatened Blanchard's cricket frog, Eastern Massasauga rattlesnake, state-threatened spotted turtle, and a beautiful display of marsh blazing star which thrives in the shallow grassy wet areas.

5. **River Corridor from Bangor to Gobles**. 1,800 acres along the lower river corridor. In the 1800s before European settlement more then 50% of the watershed was beech maple forest. This is a large area where some of the beech-maple forest still remains intact. A great blue heron rookery that at one time held over 200 nesting birds is located just south of Breedsville and is protected by the Michigan Nature Association. There is a large area of contiguous wetlands surrounding the rookery that is also home to species of concern such as the state-threatened spotted turtle and blandings turtle.

6. **Fisheries Protection**. 4,800 acres, encompassing many lakes with little development, including Lake 11, Lake 14, Little Bear Lake, Spring Brook Lake, and others that comprise the headwaters of the middle branch. There is also little development along the long stretches of shaded river corridor, which are a prime coldwater trout fishery. This area is also comprised of a large area of wetlands and an extensive amount of forested land including the forested area along the Kal-Haven Trail. This area also has high ground water recharge.

7. **Pullman Wetlands.** 360 acres of large contiguous wetlands near the town of Pullman. This is the largest area of intact privately owned wetlands in the watershed. Mostly emergent wetlands but also forested and scrubshrub wetlands are very important duck breeding habitat. These wetlands are almost contiguous to the expansive protected land of the Allegan State Game Area providing even more wildlife habitat. These wetlands also serve as the headwaters of both the upper and middle branches of the Black River.

8. **Allegan State Game Area**. 2,920 acres, is a portion of the Allegan State Game Area (SGA) which is one of the two largest protected areas in Southwest Michigan. The in-holdings and unprotected land directly adjacent to the Allegan SGA are high priority for conservation for both the Michigan Department of Natural Resources and SWMLC. The Allegan SGA is comprised of forests, remnant oak-pine barrens, and wetlands including coastal plain marsh and bog. We would like to work to expand this already protected area. Headwaters of the upper branch of the Black River. Historically this area was majority white pine-white oak forest.

9. **Headwaters Area**. 440 acres, comprising the headwaters of the lower branch of the river, including Munn and Mill Lakes. Species of interest found in this area include the Blanchard's cricket frog, black rat snake, and Eastern Massasauga which are all indicative of the important wetlands, lakes, and surrounding undeveloped upland ridges. This area was historically the convergence of a white pine- mixed hardwood forest and a mixed conifer swamp.

#### **Agricultural Model**

#### **OVERVIEW**

University Outreach (UO) at the University of Michigan-Flint, on behalf of the Southwest Michigan Land Conservancy (SWMLC), developed an Agricultural Lands Inventory for the Black River Watershed in southwest Michigan. This inventory uses a multi-criteria scoring approach to identify agricultural lands throughout the Black River Watershed that are highest priority for perpetual conservation.

Currently, the nine counties of Southwest Michigan produce the highest cumulative agricultural receipts in the state (highest total market value of agricultural production). Farms within the Black River Watershed account for the vast majority of fruit/berry/nut production within Southwest Michigan, which ranks #1 in the state for fruit production. Van Buren County is ranked #1 in the nation for blueberry and cucumber production and second in the state for grape production. Allegan County also ranks among the top 5 counties in the state for fruit production and also provides significant agricultural acreage toward greenhouse and nursery operations. Southwest Michigan ranks highest in the state for acres of greenhouse and nursery operations.

Approximately 55% of land use in the Black River Watershed is agricultural in nature. Conversion pressures are an especially grave concern to the state of agriculture in the Black River Watershed, as Allegan and Van Buren Counties rank 2<sup>nd</sup> and 3<sup>rd</sup> respectively as the most agriculturally vulnerable counties between now and 2020 in the state (*MSU Land Transformation Analysis.*) Farmland loss and conversion threaten to erode the agricultural base in the watershed and ultimately devastate Michigan's #1 economic industry. Considering growth projections, lack of funding for purchase of development rights efforts, and inadequate zoning and subdivision regulations in the areas

comprising the Black River Watershed, direct agricultural preservation through conservation easements and PA 116 enrollment is critical to this regions agricultural prosperity. The availability of significant federal and state income and property tax incentives will serve as a catalyst for voluntary land protection, and outreach and educational initiatives to promote these incentives will be prioritized and directed with this agricultural land inventory.

Southwest Michigan Land Conservancy staff has invested significant time over the past two years compiling information to assist with the creation of this analysis, and spent considerable time ground-truthing available crop data layers. The Conservancy found that existing crop data information from the National Agricultural Statistics Service's crop data layer was inaccurate with regard to the identification of certain specialty crops such as blueberries, though the accuracy of the layer in identifying common row crops was inconclusive. The Conservancy's initial efforts to mimic County level PDR program criteria and the scoring thereof through data layer creation, digitization and model criteria ranking proved difficult. Specifically, efforts to supplement spatial information with non-spatial criterion such as MAEAP and conservation reserve program enrollment were unsuccessful based on unavailable information or inaccurate data. Thus, the Conservancy and University Outreach have created new datasets based on a vast array of spatial and non-spatial information from state and local sources and developed an expanded analysis that both prioritizes existing farms for preservation and identifies land most suitable for agricultural use.

The objectives of this inventory are multiple and include 1) ensuring the long-term sustainability of the region's agricultural base and production stability by protecting established farms that meet these critical needs, 2) identifying potential areas for agricultural conservation practices that would increase water quality, 3) recognizing land that is best-suited to agricultural and classifying the most appropriate crop use accordingly based on various factors such as soil utility and texture, drainage, slope, irrigation needs, etc. and 4) determining where lands enrolled in temporary conservation programs exist, and how we can build off existing blocks of conserved farmland and balance farmland protection with growth needs.

This inventory utilizes a multi-criteria decision model for the Southwest Michigan Land Conservancy to support onthe-ground conservation activities such as the justification of acquisitions, proactive conservation, evaluation of opportunistic acquisitions, and the development of public relations.

The Agricultural Lands Inventory provides the Conservancy, as well as other conservation and agricultural organizations, with a mechanism to help direct and prioritize funds available for preservation efforts; to enhance collaboration on projects and planning across organizational boundaries; to allow for the prioritization of agricultural preservation activities; and to ensure the long-term sustainability of the Black River Watershed's agricultural resources.



#### **METHODS**

#### Data Development

Two data layers important to the analysis for prioritizing agricultural lands for protection that were not previously available are PA 116 lands and detailed agricultural land types. The Michigan Department of Agriculture administers the PA 116 program which restricts non-agricultural uses of a given parcel on a contract basis in return for income tax incentives and relief from certain local special assessments.

As part of this inventory, University Outreach has digitized all of the PA 116 lands within the Black River Watershed as currently identified by the Michigan Department of Agriculture as of Spring 2009. University Outreach has also developed a detailed agricultural inventory within the Black River Watershed. The detailed agricultural inventory was developed with existing crop data from SWMLC and aerial photos.

#### Criteria

The following criteria have been assessed and ranked at a parcel level for the Black River Watershed. These criteria can then be evaluated and prioritized for voluntary protection of farmland from development and conversion, and can also be used in the development of outreach and educational activities.

- 1. Size
- 2. Greater than 50% AG
  - a. Emphasis on specialty crops
- 3. Soil Productivity
  - a. Prime Farmland
  - b. Farmland of Local Importance
  - c. Prime Farmland if Drained
- 4. Fruit Site Rating
  - a. Soil Factors
    - i. Texture
    - ii. Drainage
  - b. Physiographic Factors
    - i. Slope
- 5. Fruit Site Presence/Absence (is flagged)
- 6. Ag Zoning (note: not all townships are zoned and not all zoning data is available- this criteria subject to availability)
- 7. Presence/Absence of Riparian Features
- 8. Length of River or Stream
- 9. Proximity to Existing Protected Land
- 10. Landscape Compatibility Percentage of Agricultural land within 1 mile
- 11. Enrollment in PA 116

#### **Results and Conclusions**

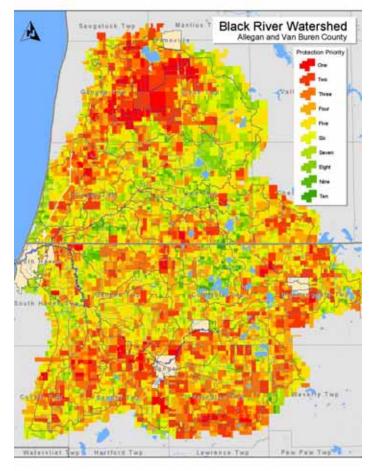
Just over 1,200 parcels have been promoted to the initial parcel subset for land protection. The major criteria used to highlight this initial data subset include parcel size (over 20 acres) and the specification that each parcel's dominant land use is agricultural (over 51%). All parcels in the watershed have been scored based on the criteria listed above regardless of size and use. This will enable SWMLC to consider the role of smaller agricultural properties, especially with regard to fruit production. It will also enable SWMLC and other entities to re-visit and

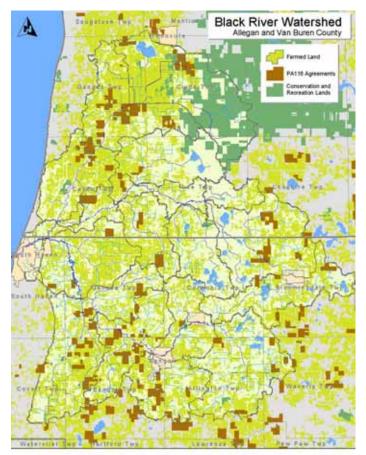
re-rank all parcels in the watershed as new information becomes available or as new factors become relevant. This data subset was further scored based on the spatial and non-spatial factors listed above.

The Black River Watershed is comprised of approximately 23,666 parcels of land, which are equal to approximately 183,490 acres. When scored using the criteria described above, the range of total score runs from 5 to 59 with a mean score of 25.

When ranked and broken into ten categories using natural breaks in the data, there are 1,233 parcels that fall into the top three categories with a sum total acreage of 59,146.99. The top three categories are as follows:

**Priority One**= 54 parcels with a score greater than 54 **Priority Two**= 450 parcels with a score greater than 43 **Priority Three**= 1233 parcels scoring greater than 39.


Parcels around the Allegan State Game Area scored very highly based on the large size of the parcels there, high PA 116 enrollment, and proximity to existing protected lands. Other common criteria that scored well here include the presence of factors that support very high potential for productive farmland (slopes, prime soils, soil texture, etc.), fruit site ratings, landscape compatibility and the presence and density of water resources. SWMLC will have the opportunity to protect compatible uses surrounding the Allegan State Game Area and negotiate best management practices through the conservation easement to protect water resources while expanding habitats conducive to wildlife and protecting the agricultural land base.


The lands comprising and surrounding the headwaters of the Black River Watershed also scored very highly based on soil types, drainage, and the presence and density of riparian features. These results underscore the utility of this model in recognizing the agricultural potential across the land base (Objective 3 above) and expand our conservation approach to avoid excluding non- agricultural property.

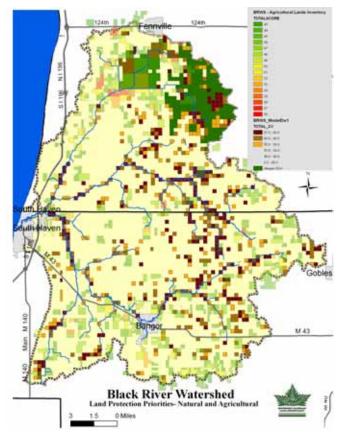
A third noticeable trend is that lands enrolled in PA 116 fared well overall across the watershed areas despite fairly even weights across the multiple criterion. This is a positive statistic in that some of the highest priority lands are at least temporarily protected.

#### PA 116 enrollment was derived from Michigan

Department of Agricultural database queries and created from legal descriptions for the areas enrolled. Thus, these enrollment areas are not always parcel specific, as all or part of a particular parcel may be included or several parcels under the same ownership may be included under one enrollment. This results in a data layer that essentially ignores parcel boundaries. The advantages of this are many, but primarily, this will enable this layer to be updated annually as new parcel information becomes available without affecting the underlying PA 116 information. In addition, it is the intent of the County farmland protection programs to accept the perpetual maintenance of this layer for use into the future.






disruption of energy flow (wind, water, etc.) vital to the functionality of natural areas for wildlife.

SWMLC plans to further study the relationships between the highest priority areas for protection and mechanisms for balancing multiple conservation goals across the landscape while protecting critical agricultural resources in the Watershed. The role that agricultural lands have in ensuring water quality and quantity protection is very significant, and through conservation measures we can help ensure that agricultural productivity is balanced with resource protection measures.

#### Outreach

A landowner workshop is planned for the landowners of high priority agricultural properties in the watershed sometime in the next six months. During the grant cycle, two landowner workshops were held -- in January 2008 and August 2008. SMWLC presented and participated in many other workshops and events focused on protecting the water quality of the Black River Watershed. The most recent event that we participated in as part of this grant included a walk, paddle, and roll event in August 2009 where more then Several conclusions can be drawn from the PA 116 layer. First of all, the PA 116 program has good representation across the Black River Watershed. However, there is no evidence of a major core cluster or clusters of PA 116 land from which to center a permanent agricultural preservation effort. Thus, these farms may not be supporting each other. While micro-clusters of PA 116 enrolled lands are evident, they are not significant enough to create an urban growth boundary. Regardless, this layer has unique applicability to the model, as there is a direct correlation to these parcels and high developability factors based on their characteristics. PA 116 participation will be a major factor for directing education and outreach initiatives to protect existing farms, but enrollment alone has only a moderate positive correlation to how the parcel scored based on crop potential (scored by soils, drainage, and other physiographic criteria) across the board.

When we examine how the BRWS natural lands model interacts with the agricultural inventory it becomes apparent that though there is very minimal direct overlap (as would be expected), there are areas where ensuring compatible land uses adjacent to significant natural lands will achieve multiple goals including the protection of groundwater recharge through infiltration, habitat relationships that promote wildlife movement and low



30 people paddled down the Black River. Landowners with more then 20 acres in our high priority Q-Q sections were invited to the landowner workshops and the walk, paddle, and roll event. The Black River Watershed land conservation project is highlighted in our summer 2009 issue of *Landscapes*.

#### Landowner Contacts

Following is a list of landowners that we have had multiple communications with about land protection options for their property within the timeframe of this grant funded project.

|    | Landowner contact in the Black River Watershed 2006-2009 |              |                                                    |  |  |  |
|----|----------------------------------------------------------|--------------|----------------------------------------------------|--|--|--|
|    | Name                                                     | Phone #      | Address                                            |  |  |  |
| 1  | Karl and Ruth Hewitt                                     | 269-253-4318 | 332 63rd St., S. Haven, MI 49090                   |  |  |  |
| 2  | Jack Spangler<br>(daughter Jodie)                        | 269-434-8619 | 35760 CR 687, Bangor, MI 49013                     |  |  |  |
| 3  | Don Sappanos Sr                                          | 269-906-0172 | 433 Blue Star, South Haven, MI 49090               |  |  |  |
| 4  | Brent Sheridan                                           | 616-550-5231 | , , ,                                              |  |  |  |
| 5  | Dan Garvey                                               | 918-261-4355 |                                                    |  |  |  |
| 6  | Carol Voytech                                            | 941-488-876  |                                                    |  |  |  |
| 7  | Karen Hoad                                               | 843-406-0363 | 1101 Wayfarer Ln., Charleston, SC 29412            |  |  |  |
| 8  | Nancy Kort                                               |              | 6 Brighton Ln., Oak Brook, IL 60523                |  |  |  |
| 9  | Hilligan Family Farm                                     |              | 49th Street                                        |  |  |  |
| 10 | Maynard Kaufman                                          | 269-656.1758 | P.O. Box 361, Bangor, MI                           |  |  |  |
| 11 | Nelson Hodgman                                           | 269-434-6616 | PO Box 215, Grand Junction, MI                     |  |  |  |
| 12 | HK Ellis                                                 |              | 10940 CR 215, Grand Junction, MI                   |  |  |  |
| 13 | Dick Curtis                                              | 269-434-6662 |                                                    |  |  |  |
| 14 | Jason Buero                                              | 269-838-2778 | 59119 16th Ave, Grand Junction, MI                 |  |  |  |
| 15 | Mike Wallace                                             | 296-227-3472 | 1113 68th Street, South Haven, MI 49090            |  |  |  |
| 16 | Gloria Garner                                            |              | 211 Michigan Ave. #3, South Haven, MI 49090        |  |  |  |
| 17 | Matt Sharl                                               |              | 212 W. Washington St Suite 1911, Chicago, IL 60606 |  |  |  |
| 18 | Sam Ewbank                                               | 269-561-2505 | On behalf of Bangor                                |  |  |  |
| 19 | Wendy Elsey                                              | 269-816-2837 | 54761 Lawerence Rd, Marcellus, MI 49067            |  |  |  |

In addition to these leads, SWMLC staff visited several additional sites of interest over the past few years. In total, 12 landowner contacts were made and discussions regarding conservation options were pursued and over four hundred of landowners were educated about BRW objectives, resource management, and conservation options.

#### Summary

In summary, SWMLC plans to continue to rely on the results of the natural resources based and agricultural models as we focus our conservation efforts within the Black River Watershed. The models have been a true success in targeting high priority properties as we and the many other project collaborators work to improve water quality within the BRW and ensure its sustainability in perpetuity. We will use the results of this planning/implementation process and the Paw Paw River Watershed planning/implementation process to work toward purchasing development rights of the high priority parcels with additional grant funding for these two watersheds through the MDEQ 319 program which spans over the next three years. We plan to keep the volunteers that have helped us with this planning process and the landowners that we have been in contact with abreast of the current conservation activities and opportunities available.

# Appendix H: Officials in the Watershed

| Name                               | Address                                   | City              | Zip   | Phone          | Position                                             |
|------------------------------------|-------------------------------------------|-------------------|-------|----------------|------------------------------------------------------|
| Dean Kapenga                       | 5634 136th Ave                            | Hamilton          | 49419 | (269) 751-8586 | Allegan County Commissioner<br>- District 5          |
| Tom Jessup                         | 6717 108th Avenue                         | South Haven       | 49090 | (269) 637-3374 | Allegan County Commissioner<br>- District 8          |
| Fritz Spreitzer                    | 1244 Turkey Ln Rd                         | Allegan           | 49010 | (269) 673-4131 | Allegan County Commissioner<br>- District 9          |
| Rebecca Rininger                   | 113 Chestnut                              | Allegan           | 49010 | (269) 673-0440 | Allegan County Drain<br>Commissioner                 |
| Bill Colgren                       | 43129 CR 215                              | Lawrence          | 49064 | (269) 674-8420 | Arlington Twp (Van Buren)<br>Supervisor              |
| Regina Hoover                      | 68129 34th Ave                            | Covert            | 49043 | (269) 427-8965 | Bangor Twp (Van Buren)<br>Supervisor                 |
| Jim Lisowski                       | 109 E Kalamazoo                           | Bloomingdale      | 49026 | (269) 521-3800 | Bloomingdale Twp (Van<br>Buren) Supervisor           |
| Allan Overhiser                    | 7104 107th Ave                            | South Haven       | 49090 | (269) 637-4441 | Casco Twp (Allegan)<br>Supervisor                    |
| Steve Revor                        | 994 46th St                               | Allegan           | 49010 | (269) 521-4522 | Cheshire Twp (Allegan)<br>Supervisor                 |
| Dorothy Appleyard                  | 539 Phoenix St                            | South Haven       | 49090 | (269) 637-0700 | City of South Haven Mayor                            |
| Tommie Giles                       | 2386 58th St                              | Fennville         | 49408 | (269) 561-5214 | Clyde Twp (Allegan)<br>Supervisor                    |
| Dale Bradford                      | PO Box 323                                | Grand<br>Junction | 49056 | (269) 434-6227 | Columbia Twp (Van Buren)<br>Supervisor               |
| Wayne Rendell                      | 45187 Blue Star Hwy                       | Coloma            | 49038 | (269) 849-2074 | Covert Twp (Van Buren)<br>Supervisor                 |
| John Hebert                        | 2107 68th St                              | Fennville         | 49408 | (269) 543-4634 | Ganges Twp (Allegan)<br>Supervisor                   |
| Nancy Ann Whaley                   | 63133 16th Ave                            | Bangor            | 49013 | (269) 427-7607 | Geneva Twp (Van Buren)<br>Supervisor                 |
| Steve Miller                       | 877 56th St                               | Pullman           | 49450 | (269) 236-6485 | Lee Twp (Allegan) Supervisor                         |
| Richard Sutherby                   | 257 W. Monroe St.                         | Bangor            | 49013 | (269) 427-5831 | Mayor, City of Bangor                                |
| Dan Rastall                        | 222 S Maple St                            | Fennville         | 49408 | (269) 561-8321 | Mayor, City of Fennville                             |
| Ross Stein                         | 14149 73rd St                             | South Haven       | 49090 | (269) 637-6746 | South Haven Twp (Van Buren)<br>Supervisor            |
| The Honorable Tonya<br>Schuitmaker | N1099 House Office<br>Bldg., PO Box 30014 | Lansing           | 48909 | (517) 373-0839 | State Representative - 80th<br>District              |
| The Honorable Bob<br>Genetski      | N1192 House Office<br>Bldg., PO Box 30014 | Lansing           | 48909 | (517) 373-0836 | State Representative - 88th Dist<br>(Allegan)        |
| The Honorable Ron<br>Jelinek       | PO Box 30036                              | Lansing           | 48909 | (517) 373-6960 | State Senator - 21st Dist (Van<br>Buren)             |
| The Honorable Patricia<br>Birkholz | PO Box 30036                              | Lansing           | 48909 | (517) 373-3447 | State Senator - 24th Dist<br>(Allegan, Barry, Eaton) |
| The Honorable Peter<br>Hoekstra    | 31 E 8th St                               | Holland           | 49423 | (616) 395-0030 | US Congressman - 2nd District                        |
| The Honorable Fred<br>Upton        | 157 S Kalamazoo<br>Mall, Suite 180        | Kalamazoo         | 49007 | (269) 385-0039 | US Congressman - 6th District                        |
| The Honorable Carl<br>Levin        | 110 Michigan NW,<br>#134                  | Grand Rapids      | 49503 | (616) 456-2531 | US Senator                                           |
| The Honorable Debbie<br>Stabenow   | 3230 Broadmoor St,<br>Suite B             | Grand Rapids      | 49512 | (616) 975-0052 | US Senator                                           |

| Tom Erdmann       | 73280 8th Ave      | South Haven  | 49090 | (269) 637-8640 | Van Buren County<br>Commissioner - District 1 |
|-------------------|--------------------|--------------|-------|----------------|-----------------------------------------------|
| Susan Hammond     | 295 E. Main Street | Breedsville  | 49027 | (269) 427-7281 | Van Buren County<br>Commissioner - District 2 |
| Denise Massey     | 14961 32nd Street  | Gobles       | 49055 | (269) 628-5001 | Van Buren County<br>Commissioner - District 3 |
| Richard Freestone | 31002 60th Avenue  | Bangor       | 49013 | (269) 427-7674 | Van Buren County<br>Commissioner - District 4 |
| James Toth        | 51640 35 ½ St      | Paw Paw      | 49079 | (269) 655-1814 | Van Buren County<br>Commissioner - District 5 |
| Joe Parman        | 219 E Paw Paw St   | Paw Paw      | 49079 | (269) 657-8241 | Van Buren County Drain<br>Commissioner        |
| Tom Rock          | 109 E Kalamazoo    | Bloomingdale | 49026 | (269) 521-3222 | Village of Bloomingdale<br>President          |
| T. Wayne Hammond  | 295 E Main St      | Breedsville  | 49027 | (269) 427-7281 | Village of Breedsville President              |
| Bernard Wilfong   | 42114 M-43         | Paw Paw      | 49079 | (269) 657-6847 | Waverly Twp (Van Buren)<br>Supervisor         |

## Appendix I: Planning and Zoning Assistance in the Black River Watershed

The Van Buren Conservation District (VBCD) and the Southwest Michigan Planning Commission (SWMPC) with grant funds from the Michigan Department of Environmental Quality provided planning and zoning assistance to several municipalities in the watershed. The purpose of the assistance was to empower local officials to incorporate watershed protection measures into plans and policies. Further, the language developed during this project is provided as a model for other municipalities in the watershed. All master plan and zoning ordinance language can be viewed at www.swmpc.org/ordinances.asp.

The Van Buren Conservation District solicited proposals from municipalities within the Black River Watershed for

planning and zoning assistance. The Black River Watershed Project Steering Committee ranked the proposals and awarded assistance to four communities (Arlington Township, Bangor City, Clyde Township and Columbia Township). The selection was based on amount of land in the watershed, the amount of land in a priority area, and the community's commitment to protecting water quality and natural resources. Each of the four communities signed a partnership agreement with the Van Buren Conservation District.

The assistance provided included a review of the master plan and zoning ordinance. A document review tool was developed by SWMPC to evaluate master plan and zoning

#### Process for Improving Master Plan and Zoning Documents in the Black River Watershed:

- Review master plan and zoning ordinance
- Meet with planning commission to identify issues of concern
- Develop priority list of issues
- Develop master plan language
- Adopt master plan language
- Develop zoning ordinance
   longuage

ordinances. The tool can be found at <u>http://www.swmpc.org/communityasmt.asp</u> and can be utilized by other municipalities to review their master plans and zoning ordinances. The review was followed by meetings with the

planning commission to identify issues of concern for the municipality. From the meetings, SWMPC developed a list of priority issues for the planning commission to consider addressing. Then SWMPC met with the planning commission to develop master plan and/or zoning ordinance language to address priority issues.

In addition to the four selected municipalities, several other municipalities in the watershed received assistance in various ways. Waverly Township received assistance through the Paw Paw River Watershed Project. South Haven City asked SWMPC for assistance in developing parking requirements which would allow pervious pavement. Bloomingdale Township and Bloomingdale Village The following municipalities in the Black River Watershed received planning and zoning assistance from the Southwest Michigan Planning Commission: Arlington Township Bangor City Bloomingdale Township Bloomingdale Village Clyde Township Columbla Township South Haven Township South Haven City Waveny Township Van Buren County were updating their Recreation Plan and incorporated water quality language. South Haven Township was updating their master plan and zoning ordinance and incorporated many water quality issues and concerns. Lastly, Van Buren County is currently working with the SWMPC to develop their first recreation plan. This plan will highlight watersheds, water quality issues and green infrastructure.

SWMPC developed recommended master plan language for Arlington, Clyde and Columbia Townships. The City of Bangor does not have a master plan. The following table summarizes the issues and topics that language was developed by municipality.

| Issue                                             | Arlington Township | Clyde Township | Columbia Township |  |
|---------------------------------------------------|--------------------|----------------|-------------------|--|
| Watersheds                                        | Х                  |                | Х                 |  |
| Black River Watershed Plan                        | Х                  |                | Х                 |  |
| Lakes                                             | Х                  | Х              | Х                 |  |
| Streams                                           | Х                  |                | Х                 |  |
| Riparian Buffers                                  | Х                  | Х              | Х                 |  |
| Wetlands                                          | Х                  |                | Х                 |  |
| Floodplains                                       | Х                  |                | Х                 |  |
| Stormwater Management – Low Impact<br>Development | Х                  | Х              | Х                 |  |
| Impervious Surfaces                               | Х                  | Х              | Х                 |  |
| Native Vegetation                                 | Х                  | Х              | Х                 |  |
| Woodlands                                         | Х                  |                | Х                 |  |
| Wildlife Habitat                                  | Х                  |                | Х                 |  |
| Wildlife Corridors                                | Х                  |                | Х                 |  |
| Agricultural Lands                                | Х                  |                | Х                 |  |
| Green Infrastructure                              | X                  | Х              | Х                 |  |
| Erosion and Sediment Control                      | X                  |                |                   |  |
| Land Protection and Management                    | X                  |                |                   |  |
| Invasive Species                                  |                    | Х              |                   |  |

#### Master Plan Language Recommendations by Municipality

The following zoning ordinance language recommendations were developed for each municipality.

| Zoning Ordinance Language                                                                                                        | Bangor City | Clyde Township | Columbia Township |
|----------------------------------------------------------------------------------------------------------------------------------|-------------|----------------|-------------------|
| Building setbacks from water bodies (streams, rivers, lakes, wetlands) with a native vegetative buffer                           | Х           | Х              | Х                 |
| Improve parking standards to reduce impervious<br>surfaces (shared parking, parking space size,<br>minimum parking requirements) | Х           | Х              | Х                 |
| Require open space in Planned Unit<br>Developments                                                                               | Х           |                |                   |
| Site plan review (identification of natural features and review standards for protection)                                        | Х           | Х              | Х                 |
| Encourage low impact development techniques                                                                                      | Х           | Х              |                   |
| Encourage use of native species in landscaping                                                                                   | Х           | Х              | Х                 |
| Improve private road standards to reduce impervious surfaces                                                                     |             |                | Х                 |
| Require a buffer between agriculture and residential uses to protect agricultural landowners                                     |             | Х              |                   |

### Zoning Ordinance Language Recommendations by Municipality

## **Appendix J: Summaries of Previous Water Quality Studies**

Below are excerpts and summaries of previous studies that have been done in the watershed by organizations such as the Michigan Department of Environmental Quality and the Michigan Department of Natural Resources. These studies can help locate current problem areas in the watershed, but some information in them may be outdated (for example, areas in Bangor have undergone remediation for PCBs and heavy metals since these reports were completed). Updated reports will be added to this plan as they become available. Issues of concern are indicated in bold text. Locations of these waterbodies are shown in the figure at the end of this document.

#### **Overall Watershed**

• Walterhouse 2003

"...water quality throughout the Black River Watershed was adequate to support acceptable biological communities at locations with suitable riparian and in-stream habitat. Unfortunately, **historic channelization and dredging** of many of the streams, wetland drainage, sandy soils, and the current land management activities of riparian owners provides the aquatic biota of streams in the Black River Watershed with limited stable habitat" (p. 2).

#### North Branch Black River

• MDNR 1976

Bottom substrate of the North Branch was noted as being very **silty** and representative of slow flow. Suspended solid concentrations indicated a problem with **erosion** in this area. Fecal coliforms were generally low during this study. Water quality was **slightly nutrient enriched**. Macroinvertebrate sampling indicated good water quality with a high diversity of species.

• Cooper 1999

Habitat at one location (at 68<sup>th</sup> St. near 108<sup>th</sup> Ave.) was ranked as fair due to a **lack of hard bottom substrate and sand sediment**. Macroinvertebrate populations were rated as acceptable, though diversity was considerably lower than comparable locations on the Middle or South Branch.

• Walterhouse 2003

The North Branch has historically been dredged upstream of 111<sup>th</sup> Ave., creating a relatively **homogenous channel**, lacking meanders and diversity of depths and velocities. The stream channel at some locations was noted as **incised**, and the riparian zone was not functioning as a floodplain. Upstream stream segments have been **channelized** and have a **narrow riparian zone**. They have a low flow and are exposed to sunlight. Nutrients were within acceptable ranges. Macroinvertebrate communities were rated as acceptable at two sites on the North Branch. Of the two sites, the downstream site (103<sup>rd</sup> Ave.) had a habitat rating of "good", while the upstream site (113<sup>th</sup> Ave.) had a "marginal" habitat rating. Substrate was primarily sand.

#### Black River Drain

• Lakeshore Environmental 1996

Lakeshore Environmental, Inc. completed a study of the Black River Drain in the area of the Allegan State Game Area for the Allegan County Drain Commission. They examined a variety of water quality parameters, including fecal coliform, BOD, nitrate nitrogen, total phosphorus, and conductivity. Fecal coliform, nitrate nitrogen and phosphorus concentrations decreased in a spring sampling event (compared to a fall sampling event, a time at which waterfowl activity in the Allegan State Game Area is high). **Fecal coliform** levels were highest in areas downstream from the central portion of the game area, and these levels were elevated only in fall sampling events. Conductivity and BOD were also in the suspect or problem ranges for all sampling locations and dates.

• Cooper 1999

Cooper reviewed the Lakeshore Environmental (1996) study and nutrient export from the Allegan State Game Area:

"While it is entirely possible that sediment and nutrient transport may be encouraged by feeding waterfowl, these water quality parameters are also known to degrade from agricultural practices in the watershed and channel dredging itself which promotes sedimentation from bank erosion.

In addition, **channelization** increases erosive power of the stream itself during high water evens by the removal/elimination of meanders, bends, and channel debris that reduce bank erosion. Increases in nutrient concentrations in stream channels that have undergone dredging are common and even expected. The very process that lowers the channel bed to promote drainage **also removes critical substrate and flow diversity** that promotes/enables natural biological processes to utilize and thereby remove nutrients from the water column" (p. 4).

Thus, the origin of sediment and nutrients downstream of the Allegan State Game Area is not yet clearly defined.

#### **Middle Branch Black River**

#### • MDNR 1976

This study (with one station on this Branch) noted good gravel substrate and generally clear water. Salmon were observed in November 1975. Nutrients and suspended solid levels were low. **Sodium and chloride concentrations were elevated**, indicating a possible upstream source of wastes.

#### • Heaton 1997

Macroinvertebrate communities were rated as acceptable, tending toward excellent. The designated use of coldwater fishery was not being met. Habitat was rated as "fair" (moderately impaired), due to a **lack of cobble**, **boulder**, **and woody debris instream substrate** and excessive **sand and silt deposition from streambank erosion**. Water quality was within the normal range for streams in this ecoregion.

#### • Cooper 1999

Habitat was rated good for fish and macroinvertebrates due to the presence of woody debris and stable, undercut banks. High amounts of **sand deposition** were also noted. The macroinvertebrate community was rated as good, tending toward excellent.

#### • Walterhouse 2003

Macroinvertebrate communities were rated as acceptable, tending toward excellent, and habitat was rated "good." Sand was the predominant substrate, but habitat features such as woody debris, root wads, undercut banks, and deep pools were noted. The stream channel had not been channelized, and was surrounded by a wide wooded floodplain. Water quality was within the normal range for streams in this ecoregion.

#### Barber Creek (Middle Branch)

• Heaton 1997

The aquatic macroinvertebrate community and the physical habitat were both rated "excellent" (non-impaired). No salmonid species were collected during this study period, and thus, the designated use of coldwater fishery was not being met.

• Macroinvertebrate populations were rated as acceptable, though diversity was low. Populations were dominated by midge or black fly larvae, possible indicators of **nutrient enrichment**. Habitat was slightly impaired due to sediment **deposition**, **embeddedness**, and **channel structure lacking in diversity**.

#### Scott Creek (Middle Branch)

• Heaton 1997

Biological integrity of this creek was rated as acceptable based on aquatic macroinvertebrate communities. However, this acceptable rating tended towards poor downstream of an industrial point source discharge. Physical habitat was rated as "fair" (moderately impaired), due to lack of available bottom substrate, extensive embeddedness, absence of pool and riffle habitat, and lack of vegetative stability of the streambanks. Concentrations of ammonia were elevated at one site on this stream. Concentrations of arsenic, chromium, copper, mercury, nickel, lead and zinc in the sediment were relatively elevated at one station. Acetone was detected in the sediment at two sites. Methyl ethyl ketone, toluene, ethylbenzene and xylene were detected at one site (downstream of the above mentioned point source discharge).

• Cooper 1999

Riparian conditions were noted as excellent, contributing to good habitat scores. Macroinvertebrate communities were rated as acceptable, though limited by poor bottom substrate due to **deposition and embeddedness**. **High nutrient conditions** may exist as suggested by the high density of midge fly and black fly larvae.

#### • Walterhouse 2003

This stream has historically been channelized, but dredging had not occurred recently. The riparian zone is well vegetated. Macroinvertebrate community was rated as acceptable. Habitat was rated as marginal due to **absence of riffle habitat and deposition and movement of sand substrate**. Water quality was within the normal range for streams in this ecoregion

#### Spicebush Creek (Middle Branch)

#### • Heaton 1997

Biological integrity was rated acceptable based on the aquatic macroinvertebrate community. Physical habitat was rated as "fair" (moderately impaired), due to the **lack of bottom substrate cover, excessive embeddedness due to sand and silt, absence of pool and riffle habitat, and lack of vegetative stability of the streambank**. No salmonid species were collected in Spicebush Creek during this study, and thus the designated use for coldwater fishery was not met. Water quality was within the normal range for streams in this ecoregion.

• Cooper 1999

This creek was noted as being a classic **dredged** channel with a wide, shallow streambed, steep banks, **sedimentation**, and **poor substrate**. The habitat was thus rated as fair. Macroinvertebrate populations were rated as acceptable, though there was a scarcity of species indicative of excellent water quality.

#### Spring Brook (Middle Branch)

• Walterhouse 2003

Some portions of Spring Brook appear to have been channelized in the past, but now appears to be a natural, wetland bordered, low-gradient stream with fine substrate. The macroinvertebrate community was rated acceptable and the habitat was rated as good. The stream substrate is predominantly sand, and riffle habitat was absent at the sample location.

#### South Branch Black River

• MDNR 1976

Nutrient levels in this study were low, as were total dissolved and suspended solid concentrations. The only parameters with elevated levels were **iron and fecal coliform** (indicating a possible sanitary or livestock waste source).

• Hull 1989

This study focused primarily on the South Branch of the Black River in the Bangor area, though one station was upstream, immediately below the Breedsville impoundment. Overall aquatic habitat quality was low as a result of **heavy deposition of sand and silt**. Despite the lack of quality habitat, aquatic macroinvertebrates were moderately to highly abundant. Lower species diversity and abundance was found below two **point-source discharges** in Bangor. Effluent from these discharges included heavy metals, PCBs, oil and grease, chlorides and dissolved salts. Substrate downstream of one discharge was described as "oily sludge beds overlain by several inches of silt" (p. 2).

• Gashman 1990

Sediment and fish samples were collected in this study of the South Branch in Bangor, in the area of a **point-source discharge**. PCBs were detected at high levels in fish samples. Elevated levels of PCBs and heavy metals were also found in sediment downstream of the discharge.

• Cooper 1999

Macroinvertebrate populations were rated acceptable at two sites (one upstream and one downstream of Bangor). Habitat was rated good at the upstream site and excellent at the downstream site. Signs of **nutrient enrichment** (such as dense growths of Cladaphora) were noted.

• Heaton 1997

The South Branch of the Black River in some locations was found to not meet its designated use as a coldwater fishery. Much previous sampling of this branch focused on the area of the Bangor Millpond, where elevated levels of PCBs and heavy metals were found. Biological integrity of the South Branch (based on fish collections) ranged from poor to excellent. Habitat was rated as "fair" (moderately impaired) for the majority of the south branch due to **a lack of cobbles, boulders, and large woody debris, as well as due to the excessive sand and silt deposition from stream bank erosion. Phosphorus and ammonia concentrations were elevated at one location in this study.** 

#### • Walterhouse 2003

From the confluence of the Black River upstream to Bangor, the river is primarily a naturally meandering stream bordered by wooded floodplain with good sinuosity. The flow regime may be **flashy**. Sand is the predominant substrate and riffle habitat is infrequent. In this study, the most downstream site (at 70<sup>th</sup> St.) received a rank of excellent for the macroinvertebrate community (this was the only site rated as excellent in the study). Habitat was rated at good, with such elements as pools, woody debris, root wads, overhanging vegetation, and sand, muck, and detritus substrates. The flashiness of the flow regime was the only poor habitat element at this site.

The South Branch was also evaluated in Lion's Park in Bangor. The macroinvertebrate community was rated as acceptable and the habitat was ranked marginal. Riffle habitat was present (though consisted primarily of unnatural objects like brick and concrete), but the habitat was negatively impacted by the flashiness of the flow regime and **lack** of a natural riparian zone in Lion's Park.

This branch was also evaluated above the Breedsville impoundment (at 52<sup>nd</sup> St.). The macroinvertebrate community at this site rated as acceptable and the habitat was rated as marginal. Sand was the dominant substrate, and in-stream cover was sparse. **Movement and deposition of sand** at this site (just below the confluence of the Great Bear Lake Drain and the Black River Extension Drain) created a relatively uniform stream channel. Turbidity in the South Branch may be due to spawning and feeding behavior of carp in the Breedsville Impoundment (a large number of carp were documented here in June and July 2002).

#### • Wolf and Wuycheck 2004

Approximately 26,000 cubic yards of sediment were removed from the South Branch of the river in the area of the Bangor Mill Pond. The sediment was contaminated with PCBs and heavy metals. Restoration and remediation of the area concluded in June 2004 (L. Nielsen, personal communication, June 15, 2004).

#### Black River Extension Drain (South Branch)

• Cooper 1999

Macroinvertebrate sampling in this drain found very **poor diversity** and noted that the stream channel was "**void of all structure and channel diversity due to channelization**" (p. 2).

#### Butternut Creek (South Branch)

• Walterhouse 2003

This stream and all of its tributaries have been **channelized**, though dredging of some segments has not occurred for a number of years. The macroinvertebrate community was rated as acceptable, and the habitat was rated as good. Some meanders had reestablished, and the site had deep pools and woody debris. Sand was the predominant substrate. A wide riparian corridor was noted. Water quality results were within the normal range for streams in this ecoregion.

#### Cedar Creek (South Branch)

• Cooper 1999

Macroinvertebrate samples at two sites on this creek indicated fair to poor habitat and acceptable macroinvertebrate diversity (though relatively low density). Hard substrate was lacking and excessive sedimentation and embeddedness were noted. Banks were also in poor condition.

• Walterhouse 2003

This stream and all of its tributaries have been **channelized**, though dredging in some areas has not occurred recently. Streambanks were well vegetated. This stream is **incised** and sand is the dominant substrate. The **riparian zone if often very narrow**, and row crops were found to begin at the edge of the stream banks in many locations. Macroinvertebrates were scored as acceptable and habitat was rated marginal due to the **deposition and movement of sand substrates**.

#### Cedar Drain (South Branch)

• Cooper 1999

Two sites were sampled for macroinvertebrates (upstream and downstream of the Bangor wastewater sewage lagoons). The upstream site had a poor macroinvertebrate community rating and a **poor habitat** rating. The downstream site had acceptable populations with low density, and habitat was rated as fair.

#### Eastman Creek (South Branch)

• Cooper 1999

Macroinvertebrate populations were rated acceptable and habitat was rated good tending toward excellent. However, some of the species found were relatively pollution tolerant species.

#### • Walterhouse 2003

The macroinvertebrate population was rated as acceptable and the habitat was rated as good. Riffle habitat was absent, and sand was the predominant substrate. Portions of this stream have been **channelized** in the past. Streambanks were well-vegetated and were not eroding. The riparian zone was intact. Water quality results were within the normal range for streams in this ecoregion.

#### Great Bear Lake (South Branch)

• Fusilier 1998

Secchi disk trends show that both basins of Great Bear Lake are getting less clear. A significant **algal bloom** occurred in both the spring and summer of 1997. Surface **phosphorus concentrations** were high in both spring and summer. The north basin appeared to be more affected by nutrient inputs than the south basin.

#### • Walterhouse 2003b

Sampling results from this and previous studies indicate that phosphorus is the limiting nutrient in Great Bear Lake. Results of this study indicate that water quality may have improved.

#### • Fusilier 2003

There is no clear trend in phosphorus concentrations in the lake over the past 20 years. However, the phosphorus levels have at times been above  $20 \ \mu g/L$ , a level at which excessive algae and aquatic plant growth may occur. The lake experienced a significant algal bloom in April 2000. Both the north and south basins of the lake have experienced a decline in clarity over the past 20 years. A Lake Quality Index (LQI) has been calculated for the lake over the past 20 years and shows no type of trend.

#### • Walterhouse 2004

The Michigan Department of Environmental Quality developed a Total Maximum Daily Load (TMDL) for phosphorus in Great Bear Lake. This report estimates that 90% of the total annual nonpoint source load comes from agricultural land uses in the Great Bear Lake watershed. The model used does not account for pollution from precipitation or several other sources. The TMDL establishes a spring overturn phosphorus goal of 0.030 mg/L, which will require a 29% reduction in annual phosphorus loading.

Walterhouse 2007

Spring turnover phosphorus concentration in the north basin of the lake was 0.050 mg/L, and 0.025 in the south basin, for an acre weighted average concentration of 0.046 mg/L, above the TMDL goal. Sampling also indicated that a sediment trap installed upstream of Great Bear Lake does not reduce total suspended solids, nitrogen or phosphorus (though observations indicate that the trap is capturing storm event bed load). One sampling event occurred during a storm event, demonstrating that phosphorus loads increase dramatically during storm events.

#### Great Bear Lake Drain (South Branch)

• Cooper 1999

Macroinvertebrate diversity in this drain was low (though this may be due to the close proximity of the sampling site to Great Bear Lake). The habitat was considered fair (moderately impaired) due to **bottom deposition**, **embeddedness**, and lack of streamside cover.

#### Haven & Max Lake Drain (South Branch)

• Fusilier 1998

Sampling in the Haven & Max Drain indicated that **nutrients** were added to the drain between CR 388 (38<sup>th</sup> St.) and 41<sup>st</sup> St., upstream of Bloomingdale. Both nitrate **nitrogen and phosphorus** concentrations increased between these two road-stream crossings. Denitrification appeared to be occurring in the stream, and little or no nitrates were added below 41<sup>st</sup> St. The same appears to be the case for phosphorus.

#### • Cooper 1999

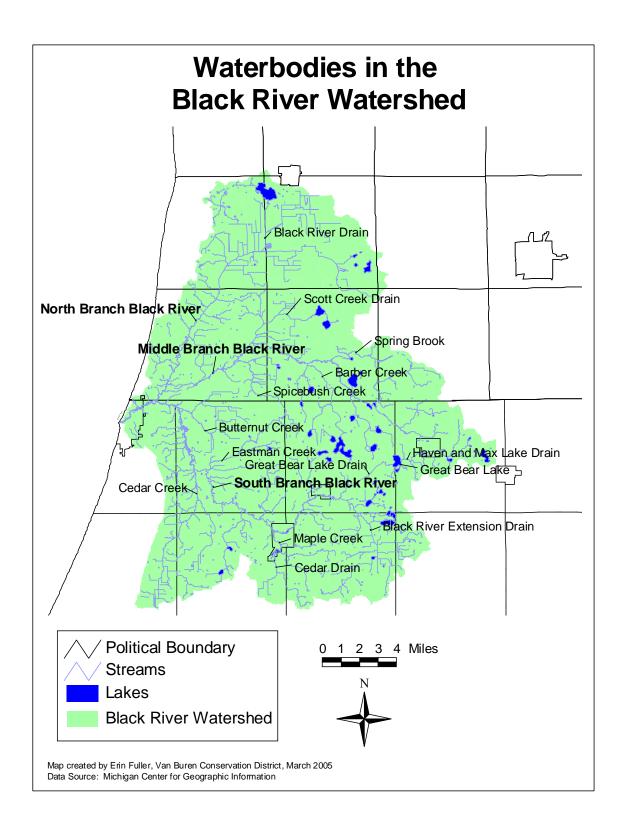
High concentrations of **phosphorus** (and ortho-phosphorus in particular) may indicate an impairment of the biological community and habitat (typically, ortho-phosphorus concentrations are low as a result of biological assimilation).

#### • DEQ 2000

Photographs and notes taken by DEQ personnel in the summer of 2000 noted **high**, **steep eroding banks** in a stretch of this drain between CR 388 (near 3850<sup>th</sup> St.) and the Remington & Powers Drain. **Turbid water**, **sediment**, **vegetation**, **and algae** were also noted in Fritz Drain, which enters Haven & Max Lake Drain in this segment. Downstream of this, (between 45<sup>th</sup> and 42<sup>nd</sup> Streets) **steep**, **eroding banks and heavy sediment deposition** were also noted, though at least one section with cobble substrate was also found. A rust colored matter (bacterial) was prevalent, especially in seep areas.

#### • Fusilier 2003

The highest phosphorus inputs to this drain come from the Munn Lake Drain.


• Walterhouse 2003b

The highest concentrations of phosphorus upstream of Great Bear Lake were found in Munn Lake Drain (which flows into the Haven & Max Lake Drain near 3850<sup>th</sup> St.). This study concluded that phosphorus and nitrogen concentrations do not increase downstream of the Bloomingdale Wastewater Treatment Plant.

#### Maple Creek (South Branch)

• Heaton 1997

Biological integrity was rated as acceptable tending towards excellent. The habitat was rated as good (slightly impaired). Ammonia and phosphorus concentrations were elevated, both upstream and downstream of the Bangor wastewater sewage lagoons. Upstream sources of nutrients may be agricultural runoff. Most of the above-mentioned studies have been entered into a Geographic Information System (GIS) housed at the Van Buren Conservation District.



**Appendix K: Black River Watershed Bank Erosion Study** 

# Monitoring Stream Bank Erosion with Bank Pins in the Black River Watershed (Allegan and Van Buren Counties)

Final Report 3/12/05



Black River Watershed Project (Tracking code 2002-0067)

Project Partners: Van Buren Conservation District Michigan Department of Environmental Quality

> Prepared by: Erin Fuller Black River Watershed Coordinator Van Buren Conservation District 1035 E. Michigan Avenue

Paw Paw, MI 49079

# **Table of Contents**

| Acknowledgements         | 41 |
|--------------------------|----|
| Introduction             |    |
| Methods                  | 42 |
| Results                  |    |
| Site number: BRN-17      | 45 |
| Site number: BRN-14      |    |
| Site number: BRM-02      | 46 |
| Site number: BR-13       | 47 |
| Site number: BRS-57      | 47 |
| Site number: BRS-63      | 47 |
| Site number: Lion's Park | 48 |
| Site number: BRS-39      | 49 |
| Discussion               | 49 |
| Appendix A               | 51 |
| Appendix B               |    |
| ••                       |    |

# List of Figures

## Acknowledgements

I would like to offer my profound thanks to the volunteers that gave their time and energy to this project: Sam Ewbank and sons, Sheri Lemon, and staff of the City of Bangor Department of Public Works (including Steve Lowder, John Halliburton, and Jack Weber). Much gratitude is also due the City of Bangor for contributing their employees' time to this project. Larry Nielsen, Bangor City Manager, was instrumental in facilitating and coordinating staff training and participation. Thank you also to the landowners that were kind enough to allow us to access their property for this study. Without their cooperation, this study could not have occurred. Julia Kirkwood of the Michigan Department of Environmental Quality provided much support, and was willing to risk becoming stuck forever in the muck of the Black River to assist with this project. Joe Rathbun, also of the Michigan Department of Environmental Quality, provided essential assistance throughout the entire course of the project. It would not have happened without his expertise and guidance.

-Erin Fuller

## Introduction

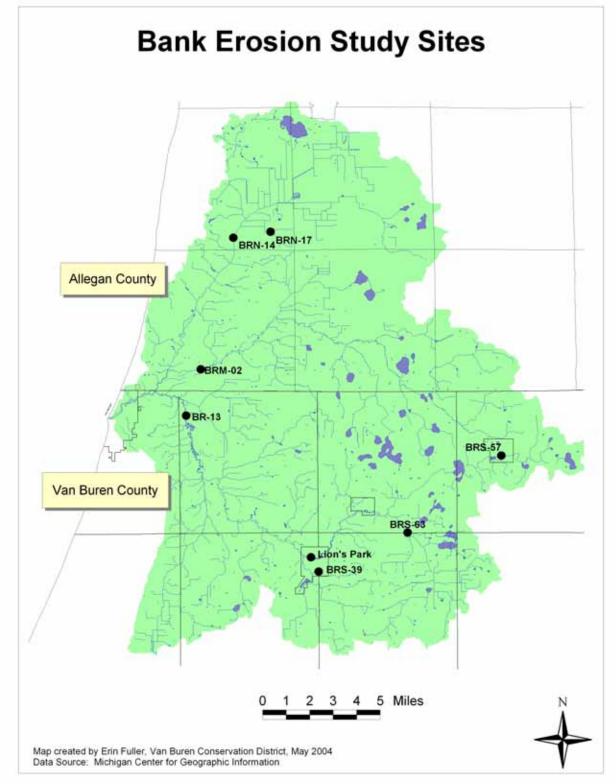
Black River Watershed Project staff and volunteers monitored stream bank erosion at various locations in the Black River Watershed in Allegan and Van Buren Counties. Erosion and sedimentation have been determined to be critical issues in the watershed, but data on the rate of bank erosion in the watershed is lacking. In addition to helping locate sites where erosion is most critical and providing information with which to estimate of sediment loading in the watershed, this study helps provide a baseline against which to evaluate best management practice (BMP) effectiveness in the future.

Bank erosion pins were placed at eight sites throughout the watershed. The methods followed the standard operating procedure cited in Appendix A. Embeddedness was also analyzed using the procedure described in the Michigan Department of Environmental Quality's Great Lakes and Environmental Assessment Section Procedure #51 (May 2002). Volunteers were engaged to perform measurements of the bank pins and embeddedness at several of the sites. The Black River Watershed Coordinator monitored bank pins at the remaining sites and acted as project manager.

### **Methods**

The methodology for this study was derived from the standard operating procedure "Monitoring Stream Bank Erosion with Erosion Pins," (Appendix A) devised by Joe Rathbun of the Michigan Department of Environmental Quality (MDEQ). This procedure has been used by MDEQ in similar studies in the Rouge River watershed in southeast Michigan (J. Rathbun, personal communication).

Sites for placement of bank erosion pins were chosen by selecting road-stream crossing sites with visible signs of erosion. Sites with obvious human-induced erosion were eliminated. Sites were distributed on both tributary streams and on the three main branches of the river. Some sites were on natural reaches and some were on previously channelized reaches. All sites had natural vegetation adjacent to the streambank. Fifteen sites were initially chosen that met these criteria. Landowners were contacted by phone or mail and permission was granted to access eight of the fifteen sites. These eight sites are shown in

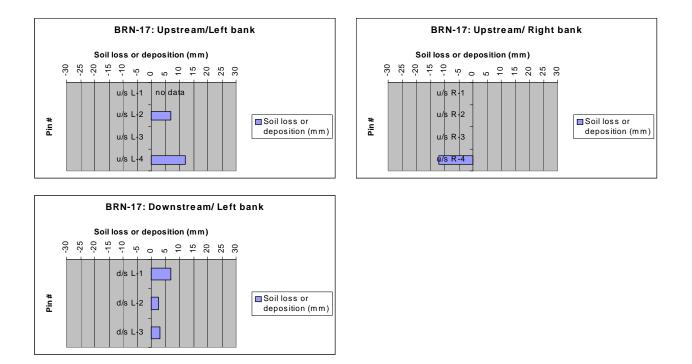

### Figure .

Pins were installed on June 9, 2004. The pins were 1/8 inch-diameter wooden dowels spray-painted fluorescent orange. Where conditions permitted, pins were installed in two locations at each site (denoted as the "upstream" location and the "downstream" location), and on both the left and right banks. This was not always feasible due to bank height, substrate, and vegetative cover. Several pins (the number depended on bank height) were installed at each of these locations, typically in a vertical arrangement on the bank. Photographs were taken of the sites, and each site was marked with orange flagging tape. At the time of installation of the erosion pins, bricks were placed in the channel for the purpose of estimating embeddedness at those sites lacking natural cobble substrate.

Volunteers were all trained individually on the proper methodology for measuring bank pins and embeddedness. Measurements of bank pins were taken from June 9, 2004 to November 18, 2004. Sites were visited shortly after major storms (a major storm was defined as any event in which rainfall of 0.25" or more occurred in any 24-hour period). The project manager contacted and alerted volunteers to take measurements. Precipitation information was obtained from the Michigan Automated Weather Network website at <a href="http://www.agweather.geo.msu.edu/mawn/">http://www.agweather.geo.msu.edu/mawn/</a> from sites in the watershed (Grand Junction in Van Buren County and Fennville in Allegan County).

Measurements were taken in the following manner: a washer was placed over the dowel and pushed toward the bank until it touched the bank. The distance from the washer to the end of the bank pin was measured with a ruler, in millimeters. Measurements were recorded on the "Black River Watershed Bank Pin and Embeddedness Inspection Form" (Appendix B). The washer was used to improve accuracy of the measurement.

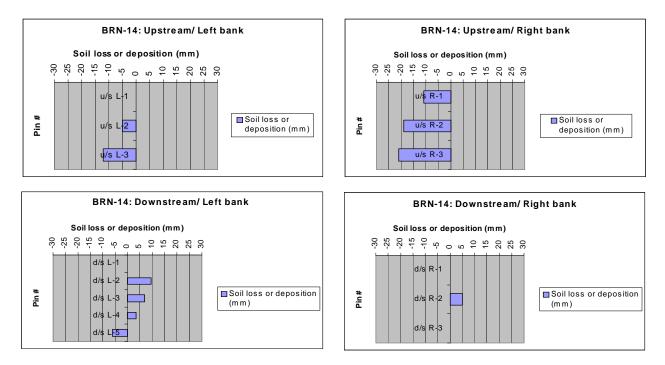
Embeddedness was estimated by grasping and removing a brick or existing cobbles and estimating the percentage that they were buried in the sediment. This estimate was scored on the "Black River Watershed Bank Pin and Embeddedness Inspection Form" (Appendix B).




## **Results**

Measurement precision for this type of study has previously been established as approximately  $\pm 1$  or 2 mm (see Appendix A). Thus, any changes in measurements that were less than 2 mm were recorded as "no change." The site with the most soil loss over the course of the study was BR-13, with a loss of 29 mm of soil recorded from the lowermost pin (L-6). The site with the most soil deposition over the course of the study was BRN-14, with 9.5 mm of soil deposited over the course of the study at the downstream/left bank location (pin # L-2). Other locations at the same site, however, also had soil loss. The full results of the study are below.

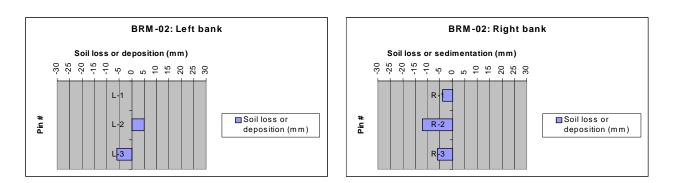
## Site number: BRN-17


This site is located on the Black River Drain, a narrow, previously channelized tributary of the North Branch of the Black River. The surrounding land use is agriculture and forest. Pins were placed in three locations at this site. Average embeddedness: 9.75 (Marginal)



## Site number: BRN-14

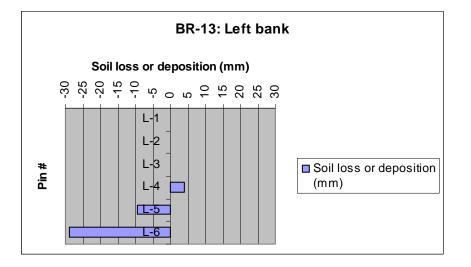
This site is located in a shallow section of the main stem of the North Branch of the Black River (this section is also technically considered part of the Black River Drain). The surrounding land use is forest. Pins were placed in four locations at this site.


Average embeddedness: 0.7 (Poor)



## Site number: BRM-02

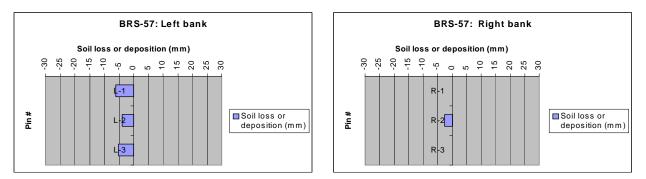
This site is located in a shallow section of the main stem of the Middle Branch of the Black River. The surrounding land use is forest. Pins were located on both the left bank and right bank. Due to the short height of the streambanks at this site, pins were placed on a horizontal axis approximately 5 feet apart. Pin #1 was the farthest pin upstream and pin #3 was the farthest downstream.


Average embeddedness: no data



## Site number: BR-13

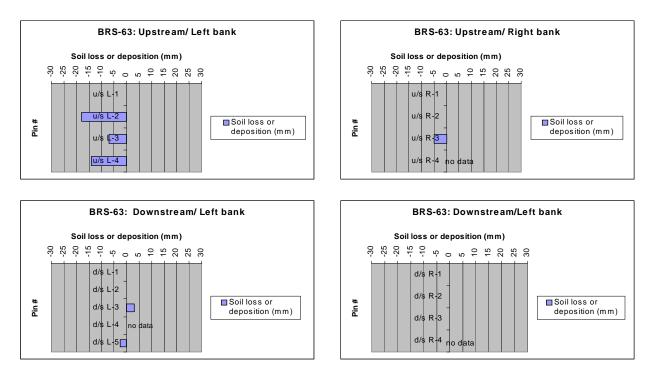
This site is located in a section of the South Branch of the Black River. The surrounding land use is forest. Pins were placed in one location at this site.


Average embeddedness: 1 (poor)



## Site number: BRS-57

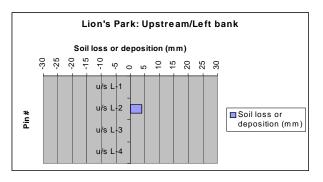
This site is located on the Haven & Max Lake Drain, a small tributary of the South Branch of the Black River. This drain has been channelized in the past, but is recovering. The site is just downstream of a park in the Village of Bloomingdale. The surrounding land use is forest and parkland. Pins were placed at two locations at this site.

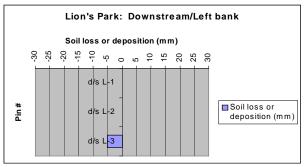

Average embeddedness: 16.4 (excellent)

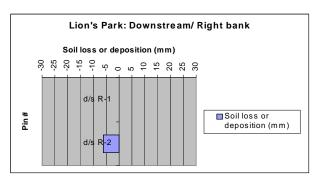


### Site number: BRS-63

This site is located on the Black River Extension Drain, a tributary of the South Branch of the Black River. The surrounding land use is forest (a road also parallels this site). Pins were placed in four locations at this site.


Average embeddedness: 12 (good)





## Site number: Lion's Park

This site is located on the South Branch of the Black River, in Lion's Park in the City of Bangor. The surrounding land use is forest and park land. Several foot paths run along the river. Significant disturbance occurred at this site (to both the vegetation and the erosion pins) during the fall fishing season. Pins were placed in three locations at this site.

Average embeddedness: 4 (poor)







### Site number: BRS-39

This site is located on the Boyer Drain, a small tributary of the South Branch that runs through the City of Bangor. The surrounding land use is forest and residential. Due to the short height of the streambanks at this site, pins were placed on a horizontal axis approximately 5 feet apart. Pin #1 was the farthest pin upstream and pin #3 was the farthest downstream.

Average embeddedness: 16.8 (excellent)



## Discussion

At some sites, the river channel appears to be quite actively changing, while other sites appeared relatively stable. Sites in which high levels of bank erosion were expected (Lion's Park and BRS-57, for example) did not always exhibit this. Other sites that appeared relatively stable had higher rates of erosion than expected (such as BRM-02). The precise location of the pins at each site certainly influenced the measurements. For example, at BRN-14, a relatively straight-channeled reach, measurements of the upstream set of pins demonstrated soil loss on the left bank, while measurements on the downstream set of pins on the left bank demonstrated soil deposition (with the exception of the lowest pin, L-5, which lost 6 mm of soil over the course of the study). This is due to many factors, including the vegetation surrounding the pins, water currents, and streambank soil composition.

Embeddedness was also highly variable, ranging from a low score of 0.7 (poor: gravel, cobble and boulder particles [or bricks] are more than 75% surrounded by fine sediment) at BRN-14 to a high of 16.8 (excellent: gravel, cobble and boulder particles [or bricks] are 0-25% surrounded by fine sediment) at BRS-39.

Many pins broke over the course of this study, which certainly limited data collection. Several bank pins were sited in areas frequented by wildlife such as deer and raccoons (BRN-14 and BRN-17 especially). These locations suffered from high amounts of pin breakage, likely as a result of wildlife interference. Deer and raccoon tracks were found in close proximity to the pins and human interference at these sites was considered unlikely due to their remote locations. Some pins likely broke in high water events when debris was washed against them. Other pins likely broke due to human interference (especially the two sites that were in parks, BRS-57 and Lion's Park). Future studies should utilize pins of a larger diameter (3/8 inch or 1/4 inch).

Related to pin breakage, another issue that hampered this study was the difficulty of determining a pin's number if pins above or below it had been broken. For example, site BR-13 had 6 pins in a vertical arrangement. On 7/9/04, the volunteer in charge of the site reported a pin missing. Due to fluctuations in water level, it was impossible to determine if the pin was L-5 or L-6. In future studies, pins should be labeled with their number (or possibly color-coded). Additionally, the distance from the top of the bank to each pin could be measured.

In the future, more sites should be monitored if at all possible. The small sample size makes it impossible to draw conclusions for the watershed (or even a specific branch or tributary of the river). However, one of the most difficult

aspects of this study was receiving landowner permission for accessing the river. Many landowners simply never responded to phone calls or letters. Access to sites can be physically difficult as well, given the steep banks in many areas, as well as the prevalence of poison ivy and stinging nettles. Safety is certainly concern for staff and volunteers monitoring these sites (most sites were monitored by one person rather than a team). Deeper sections of river may not be safely monitored by one person.

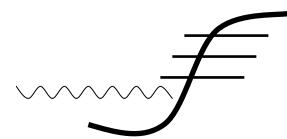
Overall, this was a useful pilot study. It brought out some aspects that should be improved upon in future studies. This is a simple, relatively inexpensive study that can be undertaken by volunteers. Before-and-after bank pin studies should be useful in monitoring effectiveness of streambank remediation efforts in the future.

## **Appendix A**

### STANDARD OPERATING PROCEDURE

### MONITORING STREAM BANK EROSION WITH EROSION PINS

Joe Rathbun Michigan Department of Environmental Quality – Water Division Southeast Michigan District Office (734) 432-1266 rathbunj@michigan.gov


### 1.0 Overview

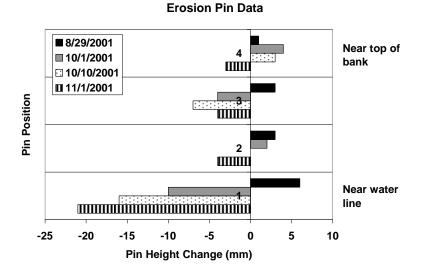
Stream bank erosion is a natural process that occurs in every watershed. Bank erosion rates, however, are known to change when either the stream discharge pattern and/or volume changes, or when the sediment loading to the stream changes. Both stream discharge and sediment loading usually change in urbanizing watersheds (e.g., Whipple et al., 1981), sometimes drastically. Many stream channel assessment studies or restoration projects require estimates of stream channel stability, and this standard operating procedure (SOP) describes a technique for measuring stream bank erosion rates, using erosion pins.

Many erosion pin studies employ metal pins (e.g., Neller, 1988), but this SOP recommends wooden dowel rods. Excessively high rates of bank erosion can result in the loss of pins, and wooden pins will eventually decompose.

### 2.0 Procedure

- 1. Cut wooden dowel rods (1/8" or 3/16" diameter) into 12" to 18" lengths.
- 2. Paint one end a bright color (orange or red), for visibility.
- 3. Drive into the stream bank with a hammer, leaving  $\sim 2^{\circ}$  protruding from the bank (see schematic, next page).
  - The number and pattern of erosion pins at any one location will vary depending on the purpose of the study. A typical installation involves 3 or 4 pins in a vertical arrangement up the bank, with the lowest pin being within a few inches of the waterline at base flow and the highest pin being within a few inches of the top of the bank.
  - The number of stations monitored will also depend on the purpose of the study. If monitoring the performance of a stream bank stabilization BMP, it is often desirable to install pins at nearby, similar banks that lack the BMP, in addition to monitoring the specific location of interest.




4. Measure the height of the erosion pins on the day they are installed ("Day 0" data) and again at periodic intervals, to the nearest millimeter.

- Measurement frequency depends on the purpose of the study. Recommended intervals include monthly, or after every major rain event, or a combination of both.
- Note that erosion pins will record soil or sediment deposition as well as erosion. If soil deposition is likely, greater than 2" should be left protruding from the bank on Day 0.

<u>Note:</u> if erosion pins are left in the bank over a winter, their heights should be measured early in the spring to check for frost-heave.

### 3.0 Data Calculation and Interpretation

(1) Pin heights recorded on the day the pins are installed are considered "Day 0" data, and all subsequent measurements are compared to these data. Measurements of bank erosion are typically expressed as negative numbers (subtracted from the Day 0 data), while bank deposition is expressed as positive numbers (added to the Day 0 data; see figure, below).



(2) Based on preliminary field studies by the author, the expected precision of careful erosion pin measurements is approximately  $\pm 1$  or 2 mm. Consequently, pin height changes of this amount or less should be interpreted as indicating 'no change.'

(3) The mass of eroded bank soil can be calculated from erosion pin data if the length and average height of the monitored bank is known, and if the bulk density of the bank soil is measured or estimated. Example bulk density figures are below.

| Texture                 | <b>Bulk Density</b> |  |  |
|-------------------------|---------------------|--|--|
|                         | (g/cc)              |  |  |
| Sand                    | 1.6                 |  |  |
| Loam                    | 1.2                 |  |  |
| Clay                    | 1.05                |  |  |
| (Univ. of Saskatchewan) |                     |  |  |

#### 4.0 References

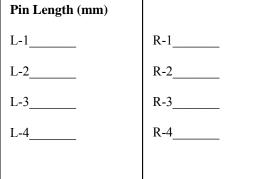
Neller, R.J. 1988. A Comparison of Channel Erosion in Small Urban and Rural Catchments, Armidale, New South Wales. *Earth Surface Processes and Landforms*. 13:1-7.

Whipple, W., J.M. DiLouie, and T. Pytlar. 1981. Erosional Potential of Streams in Urbanizing Areas. *Water Resources Bulletin*. 17(1):36-45.

## **Appendix B**

### Black River Watershed Bank Pin and Embeddedness Inspection Form

1. Date & Time\_\_\_\_\_2. Site #\_\_\_\_\_


3. Your name\_\_\_\_\_

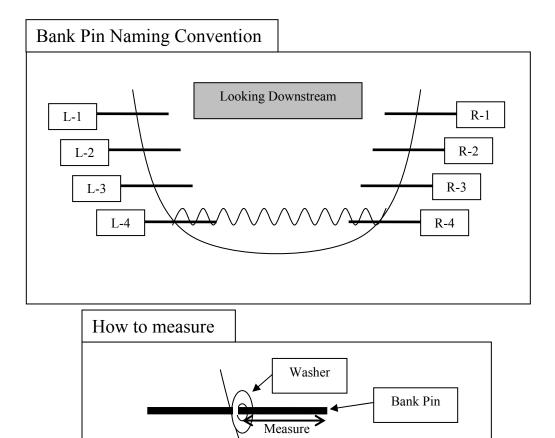
4. Are any pins shifted from their original position (perpendicular to the bank)? If so, please list which pins have shifted, using the naming convention shown on the back side of this sheet.

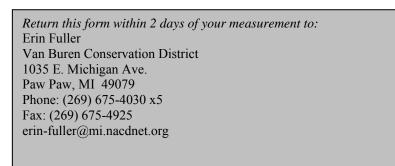
5. Are any of the pins missing or loose? If so, please list which pins are missing or loose, using the naming convention shown on the back side of this sheet.

- 6. Measurements
- Bank Pins: There are two sets of pins at each site. Record measurements of the upstream set in the box below to the left. Record measurements of the downstream set in the box below to the right. (Place a washer over the dowel and push it toward the bank until it touches the bank but is oriented at 90° (see diagram on the back side of this sheet). Measure from the washer to the end of the bank pin, in millimeters.
- Embeddedness: Grasp and remove a few existing cobbles or bricks and estimate the average depth that they are buried in the sediment. Estimate embeddedness and circle the appropriate score in the box below.

## Upstream




## Downstream


| Pin Length (mm) |     |
|-----------------|-----|
| L-1             | R-1 |
| L-2             | R-2 |
| L-3             | R-3 |
| L-4             | R-4 |
|                 |     |
|                 |     |

## Embeddedness

| Embeddedness<br>(Riffle/run<br>stream) | Excellent<br>Gravel, cobble and<br>boulder particles (or<br>bricks) are 0-25%<br>surrounded by fine<br>sediment. | Good<br>Gravel, cobble and<br>boulder particles (or<br>bricks) are 25-50%<br>surrounded by fine<br>sediment | Marginal<br>Gravel, cobble and<br>boulder particles<br>(or bricks) are 50-<br>75% surrounded by<br>fine sediment | Poor<br>Gravel, cobble and<br>boulder particles (or<br>bricks) are more than<br>75% surrounded by<br>fine sediment |
|----------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| SCORE                                  | 20 19 18 17 16                                                                                                   | 15 14 13 12 11                                                                                              | 10 9 8 7 6                                                                                                       | 5 4 3 2 1 0                                                                                                        |

### **Black River Watershed Bank Pin and Embeddedness Inspection Form**





Bank

# Appendix L: Build-Out Analysis and BMP analysis

## Urban Build-Out Analysis for the Black River Watershed

Prepared for: Southwest Michigan Planning Commission 185 East Main Street, Suite 701 Benton Harbor, MI 49022

Prepared by: Kieser & Associates, LLC 536 E. Michigan Avenue, Suite 300 Kalamazoo, Michigan 49007

September 30, 2009

## TABLE OF CONTENTS

| 1.  | Int  | roduction                                                |
|-----|------|----------------------------------------------------------|
| 2.  | Bu   | ild-out Modeling Methods2                                |
| 2   | .1   | Base GIS Build-out Layer                                 |
| 2   | .2   | Pollutant Load Calculations                              |
| 3.  | Ba   | seline Results                                           |
| 3   | .1   | Urban Areas in the Black River Watershed                 |
| 3   | 2    | Baseline Pollutant Load and Runoff Results10             |
| 4.  | Bu   | ild-out Modeling Tool and Scenarios15                    |
| 4   | .1   | Build-out Rules                                          |
| 4   | .2   | Build-out Modeling Results                               |
| 5.  | Co   | nclusion                                                 |
| Ref | eren | nces                                                     |
| Арр | end  | ix A: Pollutant loads and runoff volume per subwatershed |
| App | end  | lix B: Pollutant loads and runoff volume per township    |

## List of Tables

| Table 1: Reclassification of IFMAP land use categories.                                             | 4 |
|-----------------------------------------------------------------------------------------------------|---|
| Table 2: Dates of Future Land Use maps used in the build-out analysis.                              | 5 |
| Table 3: Curve numbers selected for L-THIA modeling                                                 | 6 |
| Table 4: Event mean concentrations for land use categories used in the build-out analysis           | 7 |
| Table 5: 2001 Land use breakdown (%) per 12-digit HUC subwatershed                                  | 9 |
| Table 6: Percentage of pollutant load and runoff volume per land use for the Black River Watershed1 | 0 |
| Table 7: Future Land Use build-out rules defined by SWMPC1                                          | 6 |

## List of Figures

| Figure 1: L-THIA/Build-Out Non-Point Source Modeling Flow Chart                                       |
|-------------------------------------------------------------------------------------------------------|
| Figure 2: Percentage of urban land use per 12-digit HUC subwatershed (based on 2001 IFMAP land use) 8 |
| Figure 3: Sediment loading (lbs/ac/yr) per subwatershed11                                             |
| Figure 4: Total phosphorus loading (lbs/ac/yr) per subwatershed                                       |
| Figure 5: Total nitrogen loading (lbs/ac/yr) per subwatershed                                         |
| Figure 6: Average annual runoff (in in/yr) per subwatershed                                           |
| Figure 7: Loads and runoff breakdown per land use per selected subwatershed                           |
| Figure 8: Percentage change in TSS load per subwatershed under the 25% build-out scenario             |
| Figure 9: Percentage change in TP load per subwatershed under the 25% build-out scenario              |
| Figure 10: Percentage change in TN load per subwatershed under the 25% build-out scenario             |
| Figure 11: Percentage change in runoff volume per subwatershed under the 25% build-out scenario19     |

#### 1. Introduction

Under contract to the Southwest Michigan Planning Commission, Kieser & Associates, LLC (K&A) has completed a "build-out" analysis for the Black River watershed. The Black River is a 10-digit HUC subwatershed in southwest Michigan. The build-out analysis provides an estimate of the impact of urban development on pollutant loads that is used to address the U.S. Environmental Protection Agency's nineelement requirements for watershed management plans. The build-out analysis for the Black River Watershed quantifies current and future pollutant loads and runoff volumes at different levels of buildout, highlighting areas that may become important for maintaining or improving water quality.

The Black River Watershed is predominantly agricultural with some large tracts of wetlands and protected forests. The main urban center is the City of South Haven, on Lake Michigan's shoreline in Van Buren County. Allegan County experienced a 7% population growth between 2000 and 2008 (US Census Bureau<sup>1</sup>), ten times the growth experienced by the entire State of Michigan. While most of the estimated non-point source pollution in the watershed is attributed to agricultural areas, it has been shown that urban areas in this area of the state contribute significantly to pollutant loadings (e.g., K&A, 2001; DeGraves, 2005). Where new development pressures exist, pollutant loads will increase unless policies are in place to mitigate the impacts of new development. In fact, two of the goals of the Black River Watershed Management Plan are: a) to reduce stormwater discharges as a means of reducing nutrient inputs to waterways, b) to improve land use policies and promote "smarth growth" to protect water quality (Fuller, 2005). Therefore, understanding and quantifying the impact of future urban development on water quality is key to developing adequate land use management plans that meet watershed management goals.

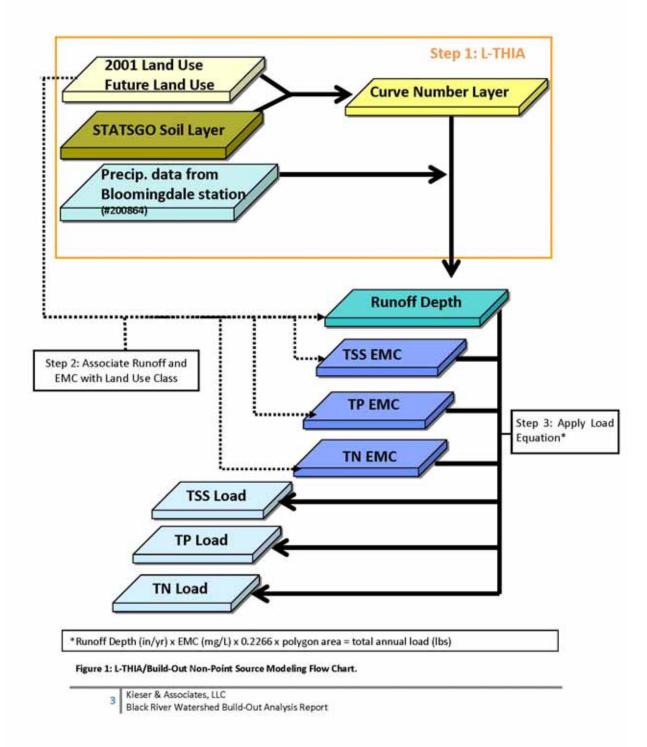
This analysis assesses the impact of zoning and future land use management on runoff volume and pollutant loads in the Black River Watershed. A simple empirical approach, similar to the one used by K&A in the St Joseph Watershed Management Plan (DeGraves, 2005) and in the Paw Paw River Watershed Management Plan (SWMPC, 2008), was used to calculate current and future runoff volumes and non-point source pollutant loads. Pollutant loads and runoff volumes were calculated using average annual runoff depth values calculated by the Long-term Hydrologic Impact Assessment model (L-THIA), and appropriate pollutant event mean concentration values from recognized citation sources. Four hypothetical scenarios, simulating urban build-out at a rate of 25, 50, 75 and 100% were defined to estimate the impact of urban development on water quality and quantity. Results are reported in this document.

http://quickfacts.census.gov/qfd/states/26/26159.html

<sup>1</sup> Kieser & Associates, LLC

Black River Watershed Build-Out Analysis Report

### 2. Build-out Modeling Methods


The build-out analysis and methodology is similar to the one conducted by K&A for the Paw Paw River Watershed Management Plan<sup>2</sup>. The build-out model developed for the Black River Watershed uses the same data sources used in the Paw Paw River WMP in order to provide consistency in results for the southwest Michigan region.

#### 2.1 Base GIS Build-out Layer

The build-out analysis is based on the development of a complex GIS layer where multiple data layers (land use, soils, political boundaries, etc.) are overlaid and each unique record (i.e., polygon) is assigned individual runoff and event mean concentration values as well as specific management characteristics. The conceptual design is presented in Figure 1.

<sup>2</sup>http://www.swmpc.org/downloads/pprw\_buildout\_report.pdf

Kieser & Associates, LLC



The following layers were used to create the base GIS build-out layer:

- 2001 IPFMAP land use: the 2001 IFMAP land use/land cover layer<sup>3</sup> was reclassified into nine broad categories to match, as much as feasible, land use categories with known event mean concentration values and land use categories available in L-THIA (Table 1).
- · STATSGO soil layer: The STATSGO soil data layer<sup>4</sup> provided information on the hydrologic soil group for each soil type.
- 12-digit hydrologic unit code (HUC) subwatershed.
- Municipalities.

### Table 1: Reclassification of IFMAP land use categories.

|                  | 2001 IFMAP Classification                         | Reclassified Values |                             |  |
|------------------|---------------------------------------------------|---------------------|-----------------------------|--|
| and Use<br>Value | Land Use Category                                 | Reclassified Value  | Reclassified<br>Description |  |
| 1                | Low intensity urban                               | 1                   | Low density urban           |  |
| 2                | High intensity urban                              | 2                   | High density urban          |  |
| 4                | Road/parking lot                                  | 3                   | Transportation              |  |
| 5                | Non-vegetated farmland                            | 4                   | Agriculture                 |  |
| 6                | Row crops                                         | 4                   | Agriculture                 |  |
| 7                | Forage crops/non-tilled herbaceous<br>agriculture | 4                   | Agriculture                 |  |
| 9                | Orchard/vineyard/nursery                          | 4                   | Agriculture                 |  |
| 10               | Herbaceous openland                               | 5                   | Rural open                  |  |
| 12               | Upland shrub/low density trees                    | 5                   | Rural open                  |  |
| 13               | Parks/golf courses                                | 6                   | Urban open                  |  |
| 14               | Northern hardwood association                     | 7                   | Forest                      |  |
| 15               | Oak association                                   | 7                   | Forest                      |  |
| 16               | Aspen association                                 | 7                   | Forest                      |  |
| 17               | Other upland deciduous                            | 7                   | Forest                      |  |
| 18               | Mixed upland deciduous                            | 7                   | Forest                      |  |
| 19               | Pines                                             | 7                   | Forest                      |  |
| 20               | Other upland conifers                             | 7                   | Forest                      |  |
| 22               | Upland mixed forest                               | 7                   | Forest                      |  |
| 23               | Water                                             | 8                   | Water                       |  |
| 24               | Lowland deciduous forest                          | 9                   | Wetlands                    |  |
| 25               | Lowland coniferous forest                         | 9                   | Wetlands                    |  |
| 26               | Lowland mixed forest                              | 9                   | Wetlands                    |  |
| 27               | Floating aquatic                                  | 9                   | Wetlands                    |  |
| 28               | Lowland shrub                                     | 9                   | Wetlands                    |  |
| 29               | Emergent wetland                                  | 9                   | Wetlands                    |  |
| 30               | Mixed non-forest wetland                          | 9                   | Wetlands                    |  |
| 31               | Sand/soil                                         | 5                   | Rural open                  |  |
| 35               | Other bare/sparsely vegetated                     | 5                   | Rural open                  |  |

<sup>3</sup> Available from the Michigan Geographic Data Library at http://www.mcgi.state.mi.us/mgdl/

<sup>4</sup> Downloaded from the USDA NRCS Soll Data Mart at: http://solldatamart.nrcs.usda.gov/USDGSM.aspx

Kieser & Associates, LLC

4 Black River Watershed Build-Out Analysis Report

The Southwest Michigan Planning Commission (SWMPC) provided the following layers:

- 'No Change Layer' with protected/permanent features: Quarter-quarter sections within the proposed Allegan State Game Area that are more than 75% owned by the State of Michigan; conservation and recreation lands; and Southwest Michigan Land Conservancy protected areas.
- 'Intermediate Layer' with MDEQ regulated wetlands,
- 'Future Land Use' layer with generalized future land use categories for several municipalities within the watershed (see Table 2) based on future land use maps and plans.

| Municipality                | Master Plan<br>Future Land Use Map Date<br>Land Use Plan, March 2009                     |  |  |
|-----------------------------|------------------------------------------------------------------------------------------|--|--|
| Arlington Twp               |                                                                                          |  |  |
| City of Bangor              | City of Bangor Community Park, Recreation, Open<br>Space, and Greenway Plan - 2008-2013* |  |  |
| Bangor Twp                  | Master Plan 2001                                                                         |  |  |
| Bloomingdale Twp (see note) | No Plan Available                                                                        |  |  |
| Casco Twp                   | Casco Township Master Plan 2004                                                          |  |  |
| Cheshire Twp (see note)     | No Plan Available                                                                        |  |  |
| Clyde Twp                   | Land Use Plan Update/Amendment, March 2005                                               |  |  |
| Columbia Twp                | Columbia Township Master Plan 2002                                                       |  |  |
| Covert Twp                  | Future Land Use Plan, 2007                                                               |  |  |
| Ganges Twp                  | Ganges Township Land Use Plan 2006                                                       |  |  |
| Geneva Twp (see note)       | No Plan Available                                                                        |  |  |
| Lee Twp (see note)          | No Plan Available                                                                        |  |  |
| City of South Haven         | Comprehensive Plan 2003                                                                  |  |  |
| South Haven Twp             | Master Plan for Land Use 2008                                                            |  |  |
| Waverly Twp                 | Future Land Use Plan, 2001-2006                                                          |  |  |

Table 2: Dates of Future Land Use maps used in the build-out analysis.

\* No future land use map was available. A generalized zoning map was used instead.

Note: As a zoning master plan was not available for those townships, a general "rural residential" future land use category was used in the analysis.

All layers (in shapefile format) were overlaid and processed through ESRI ArcGIS 9.3<sup>®</sup> to create one complex GIS layer with an extensive attribute table, including fields for current and future land use category, soil type and hydrologic soil group, subwatershed and township name, regulated wetlands or "no change" classification.

#### 2.2 Pollutant Load Calculations

Both land use and soil layers were processed using the L-THIA GIS ArcView® extension to calculate runoff depth. L-THIA is a simple rainfall-runoff model developed by Purdue University<sup>5</sup>. It uses the SCS (Soil Conservation Service, now NRCS) Curve Number method and long-term precipitation data to calculate

<sup>&</sup>lt;sup>5</sup> For more information, visit L-THIA website at: http://www.ecn.purdue.edu/runoff/lthianew/index.html

<sup>5</sup> Kieser & Associates, LLC

Black River Watershed Build-Out Analysis Report

average annual runoff depths for each unique combination of soil and land use. Standard curve numbers from the TR-55 Manual were selected for each land use based on land use definition and imperviousness (Table 3).

|                            | Curve Number for Hydrologic Soil Group |    |    |    |
|----------------------------|----------------------------------------|----|----|----|
| Land Use Category          | A                                      | В  | C  | D  |
| Agricultural               | 64                                     | 75 | 82 | 85 |
| Forest                     | 30                                     | 55 | 70 | 77 |
| Rural Open                 | 39                                     | 61 | 74 | 80 |
| Urban Open                 | 49                                     | 69 | 79 | 84 |
| Transportation/Highways    | 89                                     | 92 | 94 | 95 |
| Commercial                 | 89                                     | 92 | 94 | 95 |
| Industrial                 | 81                                     | 88 | 91 | 93 |
| Low Density Residential    | 54                                     | 70 | 80 | 85 |
| Medium Density Residential | 61                                     | 75 | 83 | 87 |
| High Density Residential   | 77                                     | 85 | 90 | 92 |

| Table 3: Curve numbers se | lected for L-THIA modeling. |
|---------------------------|-----------------------------|
|---------------------------|-----------------------------|

The Rouge River National Wet Weather Demonstration Project conducted an extensive assessment of stormwater pollutant loading factors per land use class (Cave et al., 1994) and recommended event mean concentration (EMC) values for 10 broad land use classes (Table 4). These EMC values have since been incorporated into the Michigan Trading Rules (Part 30) to calculate pollutant loads from urban stormwater nonpoint sources. Runoff depth calculated through L-THIA, and event mean concentration values presented in Table 4, were added as attributes to the build-out layer and used to calculate current and future pollutant loads.

Pollutant loads were calculated using the simple equation:

EMC<sub>1</sub> x R<sub>1</sub> x A<sub>1</sub> x 0.2266 = L<sub>1</sub>

Runoff volume was calculated as follows:

#### $R_{t} \times A_{t} \times 0.0833 = R_{v}$

Where:

| EMC <sub>L</sub> = | Event mean concentration for land use L in mg/L (Table 4). |
|--------------------|------------------------------------------------------------|
| $R_{c} =$          | Runoff per land use L from L-THIA in inches/year.          |
| A <sub>L</sub> =   | Area of land use L in acres.                               |
| 0.2266 =           | Unit conversion factor.                                    |
| L <sub>L</sub> =   | Annual load per land use L in lbs/yr.                      |
| $R_v =$            | Runoff volume in acre-feet/yr.                             |
|                    |                                                            |

| Original<br>Land Use Category<br>(Rouge River) | 2001 Reclassified<br>Land Use Category | Future Land Use<br>Category      | Percent<br>Impervious                                           | TSS<br>(mg/L)                                                                     | TP<br>(mg/L)                                                                                                 | TN<br>(mg/L)<br>1.74<br>5.98<br>5.15 <sup>(3)</sup><br>varies<br>5.15 |  |
|------------------------------------------------|----------------------------------------|----------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--|
| Forest/rural open                              | Forest/rural open                      | N/a                              | 0.5% (1)                                                        | 51                                                                                | 0.11                                                                                                         |                                                                       |  |
| Urban open                                     | Urban open                             | Urban open                       | 0.5%                                                            | 51                                                                                | 0.11<br>0.37<br>0.52 <sup>(3)</sup><br>varies<br>0.52<br>0.31 <sup>(2)</sup><br>0.24<br>0.33<br>0.32<br>0.43 |                                                                       |  |
| Agricultural                                   | Agricultural                           | Agricultural                     | 3% [2]                                                          | 145<br>70 <sup>(3)</sup><br>varies<br>70<br>120 <sup>(3)</sup><br>97<br>77<br>149 |                                                                                                              |                                                                       |  |
| Low density<br>residential                     | Low density urban                      | Low density residential          | 10%<br>varies<br>30%<br>85%<br>85% <sup>(4)</sup><br>90%<br>80% |                                                                                   |                                                                                                              |                                                                       |  |
| N/a                                            | N/a                                    | Rural residential <sup>(4)</sup> |                                                                 |                                                                                   |                                                                                                              |                                                                       |  |
| Medium density<br>residential                  | N/a                                    | Medium density<br>residential    |                                                                 |                                                                                   |                                                                                                              |                                                                       |  |
| N/a                                            | High density urban <sup>(1)</sup>      | N/a                              |                                                                 |                                                                                   |                                                                                                              | 3.54 <sup>(3)</sup><br>3.29<br>2.97<br>3.97<br>2.65                   |  |
| High density<br>residential                    | N/a                                    | High density residential         |                                                                 |                                                                                   |                                                                                                              |                                                                       |  |
| Commercial                                     | N/a                                    | Commercial                       |                                                                 |                                                                                   |                                                                                                              |                                                                       |  |
| Industrial                                     | N/a                                    | Industrial                       |                                                                 |                                                                                   |                                                                                                              |                                                                       |  |
| Highways                                       | Transportation                         | Highways                         | 90%                                                             | 141                                                                               |                                                                                                              |                                                                       |  |
| Water/<br>wetlands                             | Water and Wetlands                     | Water/<br>Wetlands               | 0%                                                              | 6                                                                                 | 0.08                                                                                                         | 1.38                                                                  |  |

Table 4: Event mean concentrations for land use categories used in the build-out analysis.

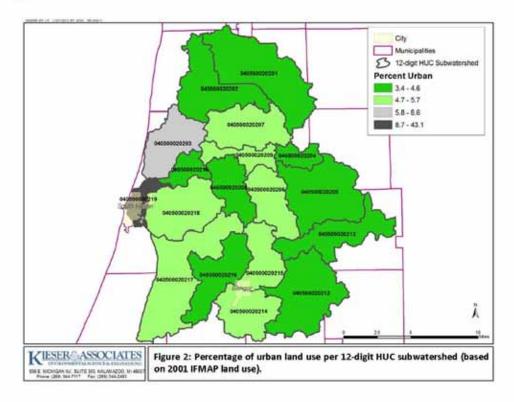
N/a: not applicable

Notes:

- Imperviousness for forest/rural open is considered similar to the Urban Open category value as it includes forested/open space areas where roads have been assigned to the Highways category.
- (2) This value is based on density of farm roads, field access roads and farmsteads in the agricultural land use category.
- (3) Low density residential category values will be applied to smaller parcel single family dwellings of less than two acres in size.
- (4) This category includes parcels greater than 2 acres. The EMC value for Low Density Residential will be used to calculate the loading and runoff for 33% of the area of these polygons (corresponding to the homestead and associated acreage developed). The loading and runoff for the remaining 67% should be calculated using the EMC value of the current land cover (IFMAP) category in the polygon. If more than one IFMAP land cover type exists in the polygon, a proportion of the land cover categories equal to the original should be used to calculate the remaining 67% of the polygon.
- (5) This land use was defined as 60% industrial, 25% commercial and 15% high density residential in the Paw Paw River Watershed. This ratio was determined by comparing areas identified in IFMAP as High Intensity Urban to 2003 and 2005 digital ortho-photographs and the 1978 MIRIS Land Use dataset. Event mean concentration values were recalculated by weighting High Density Urban land use area using the above ratio.

(6) The High Density Residential land use range nationwide is from 50–100 percent imperviousness: the land use category determined from the Rouge River study defined it as high-rise apartment and condominium buildings that are four or more stories in height. These structures when combined with adequate parking reflect commercial or industrial land use category values.

7 Kieser & Associates, LLC


Black River Watershed Build-Out Analysis Report

### 3. Baseline Results

The 2001 IFMAP land use map was used as the baseline to calculate current runoff volume and pollutant load conditions in the Black River Watershed for 'current' conditions.

#### 3.1 Urban Areas in the Black River Watershed

Figure 2 shows that only one out of 18 subwatersheds may be considered urban, with urban land use being greater than 10% of the area. This subwatershed, located at the mouth of the Black River, is 43% urban and mainly includes the City of South Haven and neighboring areas. The subwatershed (-0203) located to the north of the South Haven, along the Highway US-31, could be classified as urbanizing with about 9% of the land area in urban land use (including a large urban open area). The remaining land area in the watershed is mainly agricultural, with large tracts of forests and wetlands (including part of the Allegan State Forest in the north-west). The 2001 land use breakdown by subwatershed is shown in Table 5.



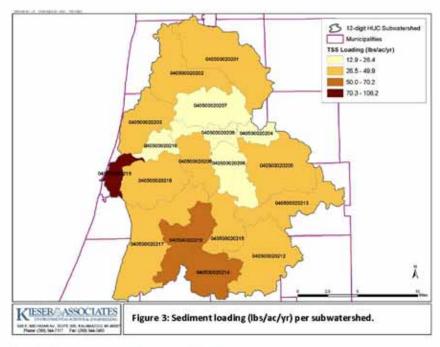
## 8 Kieser & Associates, LLC

Black River Watershed Build-Out Analysis Report

| Subwatershed<br>Name                                           | 12-Digit<br>HUC | Low Density<br>Urban | High Density<br>Urban | Transport. | Agriculture | Rural Open | Urban Open | Forest | Water | Wetlands | Total urban |
|----------------------------------------------------------------|-----------------|----------------------|-----------------------|------------|-------------|------------|------------|--------|-------|----------|-------------|
| Black River Drain<br>above Beaver Dam<br>Drain                 | 40500020201     | 0.9                  | 0.5                   | 2.0        | 34.3        | 11.8       | 0.0        | 26.5   | 2.3   | 21.7     | 3.4         |
| Black River Drain at<br>111th Avenue                           | 40500020202     | 1.1                  | 0.4                   | 2.5        | 63.5        | 9.7        | 0.0        | 14.9   | 0.1   | 7.6      | 4.0         |
| North Branch Black<br>River above Middle<br>Branch Black River | 40500020203     | 1.7                  | 0.5                   | 4.7        | 61.8        | 7.6        | 1.7        | 13.7   | 0.0   | 8.3      | 8.6         |
| Spring Brook at<br>mouth                                       | 40500020204     | 0.6                  | 0.1                   | 2.8        | 25.3        | 17.2       | 0.0        | 32.3   | 0.3   | 21.4     | 3.5         |
| North Branch Black<br>River at Spring<br>Brook                 | 40500020205     | 1.0                  | 0,1                   | 2.9        | 36,6        | 12.5       | 0.0        | 24.1   | 2.2   | 20.6     | 3.9         |
| Barber Creek at<br>mouth                                       | 40500020206     | 1.5                  | 0.3                   | 3.4        | 27.0        | 15.2       | 0.0        | 27.0   | 4.4   | 21.3     | 5.2         |
| Scott Creek Drain at<br>mouth                                  | 40500020207     | 1.4                  | 0.3                   | 3.2        | 27.4        | 16.9       | 0.0        | 31.8   | 1.8   | 17.3     | 4.8         |
| Spicebrush Creek at<br>mouth                                   | 40500020208     | 0.9                  | 0.1                   | 3.4        | 51.5        | 13.6       | 0.0        | 17.5   | 0.0   | 13.0     | 4,4         |
| Middle Branch Black<br>River at Spicebush<br>Creek             | 40500020209     | 1.0                  | 0.2                   | 3.5        | 35.7        | 16.3       | 0.0        | 22.6   | 0.0   | 20.6     | 4.7         |
| Middle Branch Black<br>River at mouth                          | 40500020210     | 1.1                  | 0.2                   | 2.8        | 46.9        | 13.3       | 0.0        | 20.5   | 0.0   | 15.2     | 4.1         |
| Black River<br>Extension Drain at<br>mouth                     | 40500020212     | 1.0                  | 0.1                   | 3.0        | 37.9        | 13.5       | 0.0        | 24.2   | 1.7   | 18.7     | 4.1         |
| Great Bear Lake<br>Drain at mouth                              | 40500020213     | 1.2                  | 0.3                   | 3.1        | 36.1        | 12.2       | 0.0        | 23.6   | 2.8   | 20.8     | 4.6         |
| Maple Creek at<br>mouth                                        | 40500020214     | 1.3                  | 0.4                   | 3.9        | 50.9        | 11.1       | 0.0        | 20.9   | 0.0   | 11.4     | 5.6         |
| South Branch Black<br>River at Maple<br>Creek                  | 40500020215     | 1.5                  | 0.4                   | 3.5        | 39.8        | 15.3       | 0.0        | 22.8   | 0.6   | 16.1     | 5.4         |
| South Branch Black<br>River at gauge<br>#04102700              | 40500020216     | 1.0                  | 0.3                   | 3.0        | 49.2        | 11.8       | 0.0        | 18.9   | 0.3   | 15.6     | 4,3         |
| South Branch Black<br>River at Cedar Creek                     | 40500020217     | 1.4                  | 0.2                   | 3.7        | 47.0        | 14.0       | 0.0        | 19.7   | 0.0   | 14.0     | 5.3         |
| South Branch Black<br>River at mouth                           | 40500020218     | 1.8                  | 0.4                   | 3.4        | 54.2        | 11.2       | 0.0        | 17.3   | 0.0   | 11.6     | 5.7         |
| Black River at<br>mouth                                        | 40500020219     | 15.1                 | 10.0                  | 17.9       | 15.4        | 13.3       | 0.0        | 20.5   | 0.8   | 7.0      | 43.1        |
|                                                                | Total           | 1.5                  | 0.5                   | 3.4        | 42.8        | 12.8       | 0.1        | 22.0   | 1.1   | 16.0     | 100.0       |

Table 5: 2001 Land use breakdown (%) per 12-digit HUC subwatershed.

#### 3.2 Baseline Pollutant Load and Runoff Results


Pollutant loads for Total Phosphorus (TP), Total Nitrogen (TN), Total Suspended Sediment (TSS) and runoff volume per land use were calculated for the Black River Watershed under current conditions (i.e., 2001 land use). Modeling results (Table 6) show that, while agriculture remains the largest non-point source of pollutants within the Black River Watershed, urban land uses contribute over 25% of the total pollutant load although they occupy only 5% of the land area (Table 5).

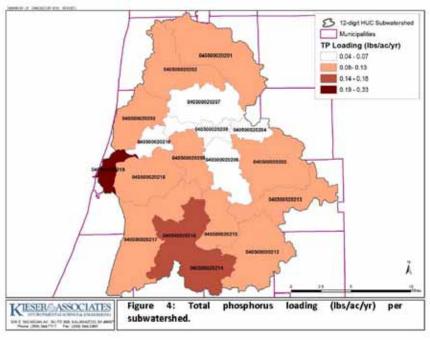

|                    | %    | % of total load/volume |      |        |  |  |  |  |
|--------------------|------|------------------------|------|--------|--|--|--|--|
| Land Use Category  | TSS  | TP                     | TN   | Runoff |  |  |  |  |
| Agriculture        | 65.6 | 62.0                   | 77.2 | 58.4   |  |  |  |  |
| Forest             | 3.1  | 2.5                    | 3.0  | 7.9    |  |  |  |  |
| High density urban | 1.8  | 1.7                    | 1.5  | 1.9    |  |  |  |  |
| Low density urban  | 0.9  | 2.4                    | 1.8  | 1.6    |  |  |  |  |
| Transportation     | 26.0 | 29.4                   | 14.0 | 23.8   |  |  |  |  |
| Urban Open         | 0.0  | 0.0                    | 0.0  | 0.0    |  |  |  |  |
| Rural open         | 2.5  | 2.0                    | 2.5  | 6.4    |  |  |  |  |
| Water              | 0.0  | 0.0                    | 0.0  | 0.0    |  |  |  |  |
| Wetlands           | 0.0  | 0.0                    | 0.0  | 0.0    |  |  |  |  |

Table 6: Percentage of pollutant load and runoff volume per land use for the Black River Watershed.

Total runoff volumes and pollutant loads were also calculated for each subwatershed within the Black River for these parameters. All values are presented in Appendix A. Figures 3 to 6 present TSS, TP and TN baseline loadings, and average annual runoff per subwatershed. The highest loading subwatershed (-0219) for all pollutants is consistently the urban subwatershed at the mouth of the Black River. The subwatersheds (-0214, -0216) to the south and west of the City of Bangor have the second highest loading values. This area is mainly agricultural, and located on clay soils with moderately high runoff potential (see Figure 7 for further analysis).

10





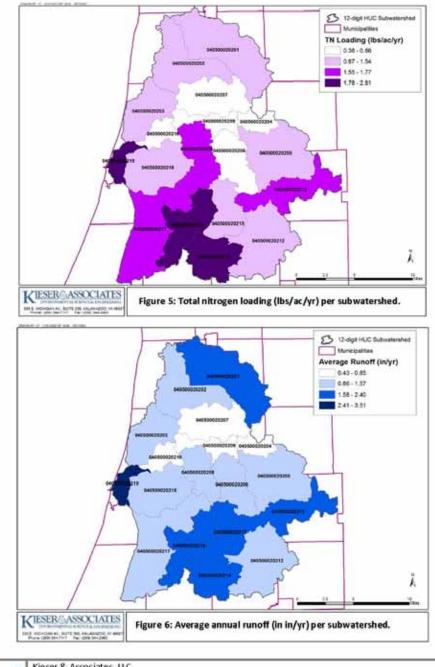
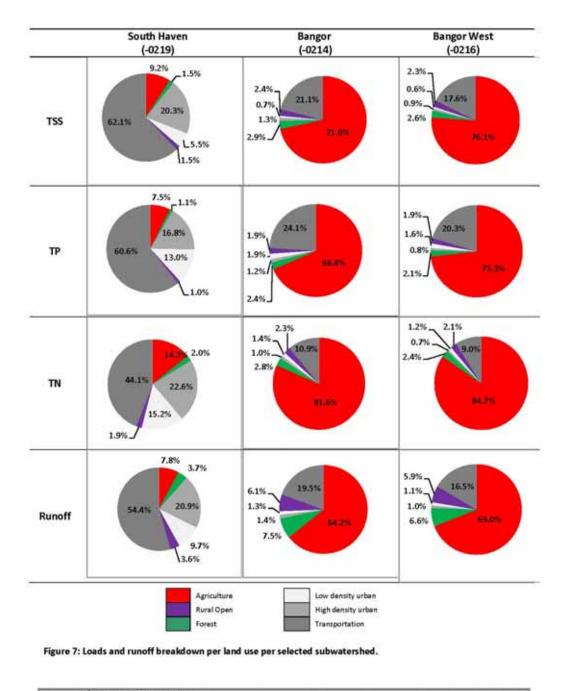




Figure 7 shows the distribution of pollutant loading and runoff volumes per land use category for the three highest loading subwatersheds in the Black River Watershed. In the South Haven subwatershed, over 80% of the pollutant load and runoff come from urban land uses (in particular, transportation). In the Bangor area subwatersheds, agriculture is the main contributor of pollutants and runoff. However, urban land uses contribute disproportionately high loads of TSS, TP and runoff when compared to the fraction of the area they occupy (similar to the Black River Watershed analysis presented in Table 6 above). For instance, in the Bangor subwatershed, urban areas contribute about 25% of the TP load while they only represent about 6% of the total acreage.

Kieser & Associates, LLC 13 Kieser & Associates, LLC Black River Watershed Build-Out Analysis Report



Total loads and runoff volumes for baseline conditions were also calculated for each township in the Black River Watershed. They are presented in Appendix B.

#### 4. Build-out Modeling Tool and Scenarios

This section discusses the approach used for creating build-out scenarios that are compared to the 'current' loads associated with the 2001 land cover data.

#### 4.1 Build-out Rules

The build-out analysis for the Black River was based on detailed Future Land Use maps compiled by SWMPC from township masterplans where available. Four build-out scenarios were defined to simulate increasing rates of urban development (25%, 50%, 75% and 100%) and were based on the zoned land use category (called Future Land Use). Within each scenario, SWMPC specified rules based on current and future land uses that either: allowed, prohibited or limited development, as described below and in Table 7.

#### **Build-out rules narrative**

For each build-out scenario, and within a defined polygon (subwatershed, township, village, etc.):

- The following land uses cannot be altered in the built-out: water, protected lands, utility easements, cemeteries.
- Regulated wetlands will be built out at a lower rate than the scenario's rate (as defined by SWMPC – see Table 7).
- When two rules apply to a defined polygon (e.g., Rural Residential or Agricultural Future Land Use within a regulated wetland), the build-out rates will be compounded. For instance, under the 25% build-out scenario, the final build-out rate for Agricultural Future Land Use within a regulated wetland will be calculated as follows: 6.25% (wetland rate) x 6.25% (agricultural rate) = 0.0039% (final build-out rate).
- Build-out change (for instance, increase in low density residential) will be applied to each
  individual polygon in the build-out GIS layer (note: each polygon contains one land use and
  one future land use category). The total area changed will correspond to 25%, 50%, 75%, and
  100% of the area of Future Land Use polygons.
- Build-out can only occur from a non-urban or lower urban category to a higher urban category (see classes and rules in Table 7). For instance, highways or high density residential cannot be changed to low density residential, but low density residential can be changed to high density residential.

#### Table 7: Future Land Use build-out rules defined by SWMPC.

|       |                                                                                    | Scenario 1                 | Scenario 2                | Scenario 3                  | Complete Build Out    |
|-------|------------------------------------------------------------------------------------|----------------------------|---------------------------|-----------------------------|-----------------------|
|       | NO CHANGE LAYER: Hydra,<br>BWMPC Protected Lands,<br>Cameteries, Utility Easements | 25.00%                     | 50.00%                    | 76.00%                      |                       |
|       | Water                                                                              | 100% IFMAP                 | 100% IFMAP                | 100% IFMAP                  | 100% IFMAP            |
|       | Protected Lands                                                                    | 100% IFMAP                 | 100% IFMAP                | 100% IFMAP                  | 100% IFMAP            |
|       | Utility Easements                                                                  | 100% IFMAP                 | 100% IFMAP                | 100% IFMAP                  | 100% IFMAP            |
|       | Cemeteries                                                                         | 100% IFMAP                 | 100% IFMAP                | 100% IFMAP                  | 100% IFMAP            |
|       | INTERMEDIATE LAYER:                                                                |                            |                           |                             |                       |
|       | Regulated Wetlands                                                                 | 6 25% FLU, 93 75% (FMAP    | 12.5% FLU; 87.5% IFMAP    | 18.75% FLU; 61.25% IFMAP    | 25% FLU; 75% IFMAP    |
| lans. | FUTURE LAND USE (FLU)                                                              |                            |                           |                             |                       |
| 1     | Urban Open                                                                         | 25% Urban Open; 75% IFMAP  | 50% Urban Open: 50% IFMAP | 75% Urban Open; 25% IFMAP   | 100% Urban Open       |
| 1     | Agricultural                                                                       | 6 25% LD Res: 93 75% IFMAP | 12.5% LD Res: 87.5% IFMAP | 18 75% LD Res; 81 25% IFMAP | 25% LO Res. 75% IFMAR |
| 1     | Rural Res                                                                          | 8 25% LD Res; 91 75% IFMAP | 16.5% LD Res; 83.5% (FMAP | 24 75% LD Res; 75.25% IFMAP | 33% LD Res; 67% IFMAI |
| 2     | Low Density Residential                                                            | 25% LD Res. 75% (FMAP      | 50% LD Res: 50% IFMAP     | 75% LD Res: 25% IFMAP       | 100% LD Residential   |
| 2     | Medium Density Residential                                                         | 25% MD Res: 75% IFMAP      | 50% MD Res. 50% IFMAP     | 75% MD Res; 25% IFMAP       | 100% MD Residential   |
| 2     | High Density Residential                                                           | 25% HD Res; 75% IFMAP      | 50% HD Res; 50% IFMAP     | 75% HD Res; 25% IFMAP       | 100% HD Residential   |
| 2     | Commercial                                                                         | 25% Commercial, 75% IFMAP  | 50% Commercial; 50% IFMAP | 75% Commercial 25% IFMAP    | 100% Commercial       |
| 2     | Industrial                                                                         | 25% Industrial; 75% IFMAP  | 50% Industrial: 50% IFMAP | 75% Industrial; 25% IFMAP   | 100% Industrial       |
| 2     | Highways                                                                           | 25% Highways; 75% IFMAP    | 50% Highways; 50% IFMAP   | 75% Highways, 25% IFMAP     | 100% Highways         |
| 2     | Transportation Corridor                                                            | 100% IFMAP                 | 100% IFMAP                | 100% IFMAP                  | 100% IFMAP            |

# IEMAP LAND COVER Ciese 88 Wester/Wetlands Forest/Runal Open Urban Open/Parks Agricultural Low Intensity Urban High Intensity Urban Transportation/Highways

#### RULES (apply in ALL scenarios):

When NO CHANGE LAYER features are present, loading values are based on IFMAP land cover. When INTERMEDIATE LAYER features are present, build-out occurs at rates specified above. When FLU is Class 1 and IFMAP land cover class is +> 2, loading values are based on IFMAP land cover. When IFMAP land cover is Class 3 loading values are based on IFMAP land cover.

#### 4.2 Build-out Modeling Results

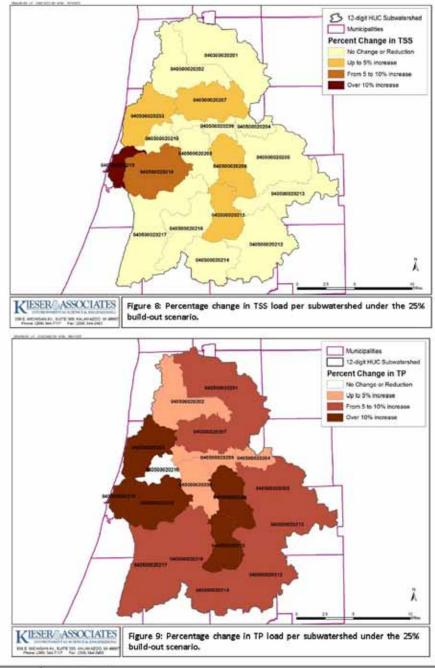
The build-out load and runoff calculations for the 25, 50, 75, and 100% scenarios were conducted using a Visual Basic (VBA) code within the GIS environment. The VBA code was used to calculate the acreage of future and current land use for each record<sup>6</sup> in the build-out layer, under a defined scenario and according to the rules defined in Table 7. Once the acreage was known, total runoff volume and loads were calculated for each record using the equations presented in section 2.2 above and the GIS field calculator function.

For each scenario, six fields were created in the attribute table of the GIS build-out layer:

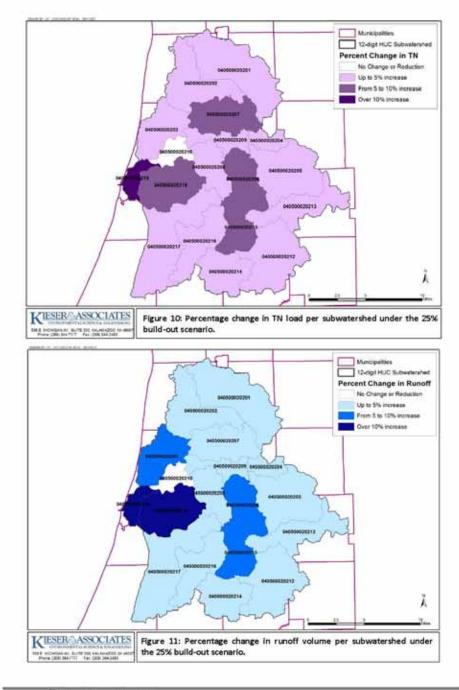
- New land use acreage under scenario xx% (e.g. 25%) (N ACRES xx)
- Remaining land use acreage (R\_ACRES\_xx)
- New TP, TN and TSS loads (Fxx\_TPLD, Fxx\_TNLD, Fxx\_TSSLD)
- New runoff volume (ROV\_xx)

Total pollutant load and runoff results per 12-digit HUC subwatershed are presented in Appendix A. The 25% build-out scenario was chosen to illustrate the impact of urban development on runoff and pollutant loads. Figures 8 to 11 present the percentage change in runoff volume and pollutant loads for the 25% build-out scenario compared to the baseline.

The figures below clearly highlight two areas in the watershed that will experience a significant increase in nutrient and sediment loads as well as runoff volume if urban areas increased by 25%:


- The South Haven subwatershed, with neighboring subwatersheds to the east and north; and
- The area to the north of Bangor, including the village of Breedsville and Saddle Lake.

Under the 25% scenario, TP load for the entire watershed would increase by 7%, TN load by 3% and runoff volume by 4%. The total increase in sediment load is not significant as increases in some watersheds are cancelled by decreases in others.


Overall, most subwatersheds would experience some varying amount of increase in loading and runoff volume. Only one watershed (-0210) does not experience increases in loads or runoff. This subwatershed is entirely zoned as "agricultural". Therefore, it will not only experience a lower rate of development but lower runoff and loads as the "agricultural" category is defined using a proportion of low density residential land use (this land use has a lower curve number than agriculture).

Total pollutant load and runoff results for the build-out analysis were also calculated per township. These results are provided in Appendix B.

<sup>&</sup>lt;sup>6</sup> As explained in section 2 above, each record only contains one current and one future land use category as well as specific information as to whether it falls within a regulated wetland or a "no change" area.



Kieser & Associates, LLC



Kieser & Associates, LLC

#### 5. Conclusions

Using a runoff model (L-THIA) and pollutant event mean concentrations, a GIS build-out layer was developed to allow analysis of land use development and its impact on water quality within the Black River Watershed. The urban analysis results indicate that the City of South Haven currently has the highest pollutant loading per acre and the highest average annual runoff. However, two agricultural subwatersheds near the City of Bangor also rank high for pollutant loading and runoff. These subwatersheds have higher loading results almost certainly due to the low rates of infiltration in the subwatersheds' clay soils. Urban stormwater runoff is the largest non-point source of nutrient and sediment loads in the South Haven subwatersheds. Although agriculture currently is the largest non-point source of pollutants and runoff in the Black River Watershed, urban land use contributes over 25% of the total pollutant load and runoff.

The analysis of a hypothetical 25% build-out scenario showed that, in addition to the South Haven subwatershed, several subwatersheds currently not urbanized would experience a significant increase in pollutant loads and runoff volume. One subwatershed, located directly east of South Haven, will likely develop because of its proximity to the City. The two other subwatersheds, located north of the City of Bangor, may experience urban development because of the presence of recreational opportunities (Saddle Lake, Kal-Haven Trail) and expansion of the Village of Breedsville. Results from this scenario clearly emphasize the increasing importance of urban stormwater as a non-point source of pollution.

In conclusion, preserving water quality in the Black River Watershed will require the implementation of practices and regulations addressing both agricultural and urban land uses such as: agricultural best management practices, stormwater best management practices and ordinances promoting infiltration, retention, reduction in impervious surfaces; zoning regulations promoting mixed land uses and smart growth.

Results presented in this report are not intended to present an absolute or inerrant representation of the current and future situation in the Black River Watershed. They are instead meant to be used as estimates to guide the development and implementation of the watershed management plan. These results can be reliably used to inform discussions and decisions by local units of government and watershed managers regarding zoning and land use management needs.

Note: A separate, easy-to-use, load calculator and BMP tool and documentation have also been provided to the Southwest Michigan Planning Commission as a part of this project to help estimate changes in loads from land use management policies and the cost-efficiency of several commonly used stormwater BMPs.

### References

Cave, K., Quasebarth, T., and Harold, E. 1994. *Technical Memorandum: Selection of Stormwater Pollutant Loading Factors. Rouge River National Wet Weather Demonstration Project RPO-MOD-TM 34.00.* Available at: <u>http://rougeriver.com/proddata/modeling.html#MOD-TM34.00</u>

DeGraves, A. 2005. St. Joseph River Watershed Management Plan. Friends of the St Joe River Association. Available at: <u>http://www.stjoeriver.net/wmp/wmp.htm</u>

Engel, Bernard. 2005. L-THIA NPS Manual, version 2.3. Purdue University and US Environmental Protection Agency. Available at:

http://www.ecn.purdue.edu/runoff/lthia/gis/lthia gis users manual ver23.pdf

Fuller, Erin. 2005. Black River Watershed Management Plan. Available at: http://vbco.org/downloads/mgmtplan\_draft3\_1.pdf

Huff, F. A. and J. R. Angel. 1992. Rainfall Frequency Atlas of the Midwest. Illinois State Water Survey, Champaign, Bulletin 71.

Kieser & Associates. 2001. Non-point Source Modeling of Phosphorus Loads in the Kalamazoo River/Lake Allegan Watershed for a Total Maximum Daily Load. Prepared for the Kalamazoo Conservation District. Available at: <u>http://kalamazooriver.net/tmdl/docs/Final%20Report.pdf</u>

Kieser & Associates. 2003. Empirical Sediment and Phosphorus Nonpoint Source Model for the St. Joseph River Watershed. A report for the Section 319 Watershed Management Planning Grant. Available at: http://www.stjoeriver.net/wmp/docs/nps\_model\_report.PDF.

Kieser & Associates. 2008. Modeling of agricultural BMP scenarios in the Paw Paw River Watershed using SWAT. Prepared for the Southwest Michigan Planning Commission.

Southwest Michigan Planning Commission. 2008. Paw Paw River Watershed Management Plan. Available at: http://www.swmpc.org/downloads/PawPawRW/PPRW\_WMP.pdf

State of Michigan Office of Regulatory Reform (MI-ORR). 2002. Part 30 - Water Quality Trading Rules. Available at:

http://www.state.mi.us/orr/emi/arcrules.asp?type=Numeric&id=1999&subID= 1999-036+EQ&subCat=Admincode.

Rouge River National Wet Weather Demonstration Project. 2001. Appendix A of the Common Appendix for Rouge Subwatershed Management Plans Submitted in Fulfillment of the MDEQ Stormwater General Permit. Available at:

http://www.rougeriver.com/pdfs/stormwater/TR37/Appendix A.pdf.

# Appendix A

Pollutant Loads and Runoff Volume per Subwatershed

| Table A-1: Pollutant loads (in lbs/year) per subwatershed under baseline conditions and build-out scenar | los . |
|----------------------------------------------------------------------------------------------------------|-------|
| There is a constant is not fearly be separate side and a second second second second                     | nes.  |

|              |           | Baseline |         |           | 25%    |         |           | 50%    |         |           | 75%    |         |           | 100%   |        |
|--------------|-----------|----------|---------|-----------|--------|---------|-----------|--------|---------|-----------|--------|---------|-----------|--------|--------|
| HUC12        | TSS       | TP       | TN      | TSS       | TP     | TN      | TSS       | TP     | TN      | TSS       | TP     | TN      | TSS       | TP     | TN     |
| 040500020201 | 669,983   | 1,765    | 24,150  | 662,909   | 1,893  | 24,809  | 656,226   | 2,024  | 25,498  | 649,931   | 2,159  | 26,217  | 644,028   | 2,297  | 26,966 |
| 040500020202 | 549,714   | 1,455    | 20,445  | 538,099   | 1,516  | 20,472  | 526,519   | 1,578  | 20,504  | 514,972   | 1,641  | 20,541  | 503,461   | 1,704  | 20,584 |
| 040500020203 | 415,546   | 1,143    | 13,991  | 420,106   | 1,257  | 14,641  | 424,679   | 1,372  | 15,292  | 429,263   | 1,487  | 15,945  | 433,860   | 1,602  | 16,599 |
| 040500020204 | 51,289    | 141      | 1,624   | 50,461    | 147    | 1,640   | 49,656    | 152    | 1,659   | 48,876    | 158    | 1,680   | 48,119    | 164    | 1,702  |
| 040500020205 | 635,615   | 1,698    | 22,782  | 624,001   | 1,790  | 23,107  | 612,757   | 1,886  | 23,465  | 601,878   | 1,985  | 23,858  | 591,368   | 2,089  | 24,285 |
| 040500020206 | 224,579   | 619      | 7,374   | 231,216   | 693    | 7,931   | 237,936   | 769    | 8,496   | 244,739   | 845    | 9,068   | 251,626   | 922    | 9,648  |
| 040500020207 | 148,677   | 415      | 4,212   | 150,209   | 450    | 4,489   | 151,727   | 486    | 4,767   | 153,231   | 521    | 5,045   | 154,721   | 557    | 5,324  |
| 040500020208 | 353,916   | 943      | 12,750  | 345,587   | 980    | 12,792  | 337,380   | 1,018  | 12,845  | 329,293   | 1,058  | 12,909  | 321,329   | 1,099  | 12,983 |
| 040500020209 | 78,723    | 221      | 2,361   | 77,739    | 228    | 2,381   | 76,818    | 235    | 2,407   | 75,959    | 243    | 2,438   | 75,161    | 251    | 2,474  |
| 040500020210 | 45,343    | 127      | 1,396   | 44,248    | 125    | 1,362   | 43,153    | 124    | 1,328   | 42,059    | 123    | 1,295   | 40,965    | 122    | 1,262  |
| 040500020212 | 665,356   | 1,772    | 23,730  | 658,521   | 1,879  | 24,257  | 651,963   | 1,990  | 24,810  | 645,682   | 2,102  | 25,386  | 639,678   | 2,218  | 25,988 |
| 040500020213 | 491,073   | 1,319    | 17,458  | 483,757   | 1,408  | 17,882  | 476,763   | 1,500  | 18,333  | 470,088   | 1,594  | 18,809  | 463,735   | 1,691  | 19,317 |
| 040500020214 | 637,538   | 1,702    | 23,078  | 637,053   | 1,841  | 23,782  | 636,692   | 1,981  | 24,499  | 636,453   | 2,122  | 25,227  | 636,339   | 2,265  | 25,968 |
| 040500020215 | 313,615   | 855      | 10,760  | 320,729   | 941    | 11,368  | 327,946   | 1,029  | 11,984  | 335,267   | 1,117  | 12,610  | 342,693   | 1,207  | 13,243 |
| 040500020216 | 647,887   | 1,716    | 23,987  | 629,437   | 1,822  | 24,243  | 611,229   | 1,930  | 24,524  | 593,257   | 2,041  | 24,829  | 575,527   | 2,155  | 25,159 |
| 040500020217 | 985,302   | 2,651    | 35,068  | 967,146   | 2,798  | 35,559  | 949,292   | 2,948  | 36,081  | 931,733   | 3,101  | 36,631  | 914,476   | 3,258  | 37,212 |
| 040500020218 | 461,952   | 1,246    | 16,396  | 489,685   | 1,374  | 17,503  | 517,463   | 1,503  | 18,615  | 545,282   | 1,633  | 19,732  | 573,144   | 1,762  | 20,853 |
| 040500020219 | 342,552   | 1,070    | 9,070   | 389,253   | 1,217  | 10,612  | 435,955   | 1,364  | 12,153  | 482,658   | 1,511  | 13,694  | 529,364   | 1,659  | 15,236 |
| Total        | 7,718,662 | 20.857   | 270.633 | 7,720,155 | 22 360 | 278.832 | 7.724.155 | 23.889 | 287.261 | 7.730.620 | 25.443 | 295.915 | 7 729 594 | 27.022 | 304.80 |

| HUC12        | Baseline | 25%    | 50%    | 75%    | 100%   |
|--------------|----------|--------|--------|--------|--------|
| 040500020201 | 2,112    | 2,163  | 2,216  | 2,271  | 2,327  |
| 040500020202 | 1,488    | 1,512  | 1,537  | 1,562  | 1,588  |
| 040500020203 | 1,125    | 1,206  | 1,288  | 1,369  | 1,451  |
| 040500020204 | 141      | 142    | 144    | 145    | 147    |
| 040500020205 | 1,800    | 1,828  | 1,858  | 1,890  | 1,925  |
| 040500020206 | 641      | 690    | 739    | 789    | 840    |
| 040500020207 | 475      | 489    | 503    | 517    | 531    |
| 040500020208 | 981      | 988    | 995    | 1,003  | 1,012  |
| 040500020209 | 218      | 220    | 222    | 224    | 226    |
| 040500020210 | 117      | 115    | 113    | 111    | 110    |
| 040500020212 | 1,915    | 1,955  | 1,997  | 2,041  | 2,086  |
| 040500020213 | 1,429    | 1,458  | 1,488  | 1,520  | 1,554  |
| 040500020214 | 1,802    | 1,879  | 1,958  | 2,037  | 2,116  |
| 040500020215 | 916      | 980    | 1,045  | 1,110  | 1,176  |
| 040500020216 | 1,811    | 1,836  | 1,863  | 1,892  | 1,922  |
| 040500020217 | 2,766    | 2,807  | 2,851  | 2,897  | 2,945  |
| 040500020218 | 1,256    | 1,415  | 1,573  | 1,732  | 1,892  |
| 040500020219 | 1,020    | 1,215  | 1,409  | 1,604  | 1,799  |
| Total        | 22,015   | 22,899 | 23,799 | 24,714 | 25,646 |

Table A-2: Runoff volume (in acre-feet/year) per subwatershed under baseline conditions and build-out scenarios.

# Appendix B

Pollutant Loads and Runoff Volume per Township

| Table B-3: Pollutant loads (in Ibs/year) per township under baseline conditions | and build-out scenarios. |
|---------------------------------------------------------------------------------|--------------------------|
|---------------------------------------------------------------------------------|--------------------------|

|                         |           | Baseline |         | 2         | 5% buildout | t .     | 50% buildout |        | 7       | 5% buildout | t      | 100% baildout |           |        |        |
|-------------------------|-----------|----------|---------|-----------|-------------|---------|--------------|--------|---------|-------------|--------|---------------|-----------|--------|--------|
| Municipality            | 155       | TP       | TN.     | 155       | TP          | TN      | 155          | TP     | TN.     | 155         | TP     | TN            | TSS       | тр     | TN     |
| Arlington Twp           | 878,276   | 2,324    | 31,857  | 869.535   | 2,485       | 32,643  | 861,100      | 2,648  | 33,456  | 852,973     | 2,815  | 34,297        | 845,154   | 2,984  | 35,166 |
| Bangor Twp              | 1,051,359 | 2,784    | 39,238  | 1,011,882 | 2,920       | 39,191  | 972,595      | 3,059  | 39,168  | 933,488     | 3,201  | 39,167        | 894,571   | 3,346  | 39.190 |
| Sangor, City of         | 102,049   | 308      | 2,762   | 126,107   | 362         | 3,432   | 150,165      | 415    | 4,102   | 174,222     | 468    | 4,771         | 198,279   | 522    | 5,441  |
| 8loomingdale<br>Twp     | 676.282   | 1,797    | 24,824  | 662,484   | 1,907       | 25,229  | 649,030      | 2,019  | 25,664  | 635,910     | 2,135  | 26.128        | 623,133   | 2,254  | 26,622 |
| Casco Twp               | 685,740   | 1,895    | 22,600  | 688,514   | 2,034       | 23.310  | 691.321      | 2,173  | 24,024  | 694,162     | 2,314  | 24,743        | 697,035   | 2,454  | 25,465 |
| Cheshire Twp            | 240,227   | 644      | 8,579   | 233,908   | 666         | 8,574   | 227,753      | 690    | 8,585   | 221,762     | 715    | 8,611         | 215,936   | 743    | 8,653  |
| Clyde Twp               | 701,434   | 1,848    | 25,463  | 688,250   | 1.985       | 26.067  | 675,373      | 2,125  | 26,694  | 662,800     | 2,268  | 27,346        | 650.535   | 2,413  | 28.022 |
| ColumbiaTwp             | 629,811   | 1,719    | 21,069  | 637,987   | 1,887       | 22,229  | 646,528      | 2,058  | 23,419  | 655,433     | 2,232  | 24,640        | 664,704   | 2,409  | 25,890 |
| Covert                  | 164,079   | 446      | 5,584   | 163,837   | 477         | 5,733   | 163,691      | 510    | 5,890   | 163,643     | 543    | 6,056         | 163,692   | 577    | 6,230  |
| Ganges                  | 487,603   | 1,291    | 38,206  | 481,885   | 1,341       | 18,273  | 476,195      | 1,392  | 18,345  | 470,530     | 1,444  | 18,420        | 454,894   | 1,496  | 18,500 |
| Geneva                  | 1,171,599 | 3,130    | 42,330  | 1,142,255 | 3,270       | 42,561  | 1,113,306    | 3,413  | 42,825  | 1.084,702   | 3,559  | 43,120        | 1,056,453 | 3,709  | 43,450 |
| Lee                     | 422,757   | 1,158    | 13,234  | 422,176   | 1,244       | 13,803  | 421,897      | 1,332  | 14,398  | 421,914     | 1,424  | 15,019        | 422,233   | 1,518  | 15,667 |
| Maniius                 | 2,273     | 6        | 93      | 2,273     | 6           | 93      | 2,273        | 6      | 93      | 2,275       | 6      | 93            | 2,273     | 6      | 93     |
| Saugatuck               | 953       | 2        | 38      | 954       | 2           | 38      | 956          | 2      | 38      | 957         | 2      | 38            | 959       | 2      | 38     |
| South Haven             | 192,696   | 570      | 5,890   | 249,611   | 749         | 7,857   | 306,528      | 929    | 9,825   | 363,445     | 1,109  | 11.792        | 420,364   | 1,288  | 13,759 |
| South Haven,<br>City of | 225,334   | 705      | 5,775   | 253,166   | 778         | 6,611   | 280,998      | 850    | 7,448   | 308,828     | 923    | 8,284         | 336,659   | 995    | 9,121  |
| Valley                  | 713       | 2        | 18      | 713       | 2           | 18      | 713          | 2      | 18      | 713         | 2      | 18            | 713       | 2      | 18     |
| Waverly                 | \$5,130   | 227      | 3,056   | 84,230    | 245         | 3,154   | 83,345       | 263    | 3,255   | 82,474      | 281    | 3,356         | 81,618    | 300    | 3,459  |
| Total                   | 7,718,273 | 20.856   | 270.617 | 7,719,766 | 22.359      | 278.816 | 7,723,767    | 23.888 | 287.245 | 2,730,232   | 25.442 | 295.899       | 7,739,206 | 27.021 | 304.7  |

| Municipality         | Baseline | 25%    | 50%    | 75%    | 100%   |
|----------------------|----------|--------|--------|--------|--------|
| Arlington            | 2,540    | 2,606  | 2,674  | 2,744  | 2,816  |
| Bangor               | 2,853    | 2,868  | 2,885  | 2,904  | 2,925  |
| Bangor, City of      | 301      | 378    | 455    | 533    | 610    |
| Bloomingdale         | 1,940    | 1,969  | 2,001  | 2,035  | 2,071  |
| Casco                | 1,850    | 1,946  | 2,042  | 2,139  | 2,236  |
| Cheshire             | 653      | 655    | 659    | 663    | 669    |
| Clyde                | 2,181    | 2,225  | 2,270  | 2,318  | 2,367  |
| Columbia             | 1,850    | 1,947  | 2,047  | 2,148  | 2,252  |
| Covert               | 455      | 471    | 486    | 503    | 520    |
| Ganges               | 1,289    | 1,320  | 1,351  | 1,382  | 1,414  |
| Geneva               | 3,282    | 3,305  | 3,330  | 3,358  | 3,388  |
| Lee                  | 1,319    | 1,351  | 1,385  | 1,421  | 1,459  |
| Manlius              | 6        | 6      | 6      | 6      | 6      |
| Saugatuck            | 2        | 2      | 2      | 2      | 3      |
| South Haven          | 587      | 829    | 1,071  | 1,313  | 1,555  |
| South Haven, City of | 665      | 770    | 875    | 980    | 1,085  |
| Valley               | 3        | 3      | 3      | 3      | 3      |
| Waverly              | 239      | 246    | 253    | 250    | 268    |
| Total                | 22,014   | 22,898 | 23,798 | 24,713 | 25.645 |

Table B-4: Runoff volume (in acre-feet/year) per township under baseline conditions and build-out scenarios.

#### BLACK RIVER WATERSHED BMP ANALYSIS

The following analysis was conducted by Kieser & Associates, LLC using the Black River Watershed Land Use Change and BMP Tool. The BMP Tool is a Microsoft Excel workbook developed to estimate the impact of land use change and zoning regulations on pollutant loads and runoff volumes. The tool can also be used to estimate general cost-efficiency of common urban best management practices. The tool is should not be used to provide site-specific BMP costs, pollutant loads or treatment design.

This workbook was designed as a separate tool from the Build-Out analysis report provided to SWMPC (K&A, 2009) and as such, it cannot be used to replicate results provided in the report. The workbook uses the same current and future land use categories to standardize comparisons between current and future land uses and to provide a better description and load estimation for urban areas (in the build-out analysis, current land use categories came from a 2001 Land Use layer).

#### DATA INPUT

The BMP analysis was conducted only for the total urban area in the Black River Watershed. Urban land use breakdown within the Black River Watershed was calculated using the 2001 IFMAP land use obtained from the Michigan Geographic Data Library<sup>1</sup>. The 2001 IFMAP urban land categories were then modified as follows to match land use categories used in the Black River Tool (Table 1).

| 2001 Land Use<br>categories | Area (acres) | Land Use<br>categories used in<br>Black River Tool | Area (acres) |
|-----------------------------|--------------|----------------------------------------------------|--------------|
| Low Density Urban           | 2,661        | Low Density<br>Residential                         | 2,661        |
| High Density                | 831          | HD Residential                                     | 125          |
| Urban (see note)            |              | Commercial                                         | 208          |
|                             |              | Industrial                                         | 498          |
| Roads/Parking<br>Lots       | 6,281        | Roads/Parking<br>Lots                              | 6,281        |

#### Table 1: Land Use categories.

Note: High Density Urban was defined as 60% industrial, 25% commercial and 15% high density residential by SWMPC for the Paw Paw Watershed Management Plan (Kieser & Associates, 2008). These ratios were also used here.

Pollutant loads were calculated using the same methodology and equations used in the Black River Build-out Analysis; i.e., using event mean concentrations from the Michigan Trading Rules (MI-ORR, 2002) (or as defined by SWMPC) and runoff rates calculated by L-THIA (Section 2.2 in the Build-out report).

Because runoff rates vary by soil type, a simple visual analysis was conducted to verify the main hydrologic soil groups in urban areas. The two main urban areas (South Haven and Bangor) are entirely

Kieser & Associates, LLC

<sup>&</sup>lt;sup>1</sup> Available at: http://www.mcgi.state.mi.us/mgdl/

located on C soils. Therefore, load calculations for LD Residential, HD Residential, Commercial, and Industrial used runoff rates for hydrologic soil group C. Because roads and parking lots are spread out throughout the watershed, load calculations were completed using 50% of the acreage on A soils and 50% of the acreage on C soils (Table 2).

Table 2: STATSGO hydrologic soil group breakdown for the Black River Watershed.

|                 | Hydrologic Soil Group |     |      |      |      |  |  |  |  |
|-----------------|-----------------------|-----|------|------|------|--|--|--|--|
|                 | A                     | В   | C    | A/D  | None |  |  |  |  |
| % of total area | 17.4                  | 2.6 | 44.5 | 30.8 | 4.7  |  |  |  |  |

BMP treatment efficiencies and total costs are estimated in Table 3 using various sources. BMP definitions are included in Appendix A.

Table 3: BMP efficiency and costs.

|                              | % E  | fficien | cy <sup>(1)</sup> | Base Cost <sup>(2)</sup> |  |  |
|------------------------------|------|---------|-------------------|--------------------------|--|--|
| ВМР                          | тр   | TN      | TSS               | (\$ per acre treated)    |  |  |
| Grass Swale                  | 40%  | 90%     | 80%               | 3,000                    |  |  |
| Extended Dry Detention Basin | 30%  | 20%     | 90%               | 3,000                    |  |  |
| Wet Retention Pond           | 90%  | 30%     | 90%               | 3,000                    |  |  |
| Rain Garden (Neighborhood)   | 100% | 100%    | 100%              | 69,914                   |  |  |
| Constructed Wetlands         | 49%  | 30%     | 76%               | 42,254                   |  |  |

(1) Efficiency values for extended dry detention basin, wet retention pond and grass swale are taken from the Michigan Trading Rules.

Efficiency values for constructed wetlands were taken from EPA (2005), rain gardens are assumed to trap 100% of runoff and pollutants.

(2) Base cost and cost adjustment values are provided in WERF's BMP and LID Whole Life Cost Worksheets (2009b).

The medium value of \$3,000 per acre is used for retention, detention and swale.

For rain gardens, the cost per area treated is \$16.05 (cost per sq. ft of rain garden) x 20% (rain garden area ratio to drainage area) =\$3.21 per sq. foot treated (or \$139,828 per acre treated). The assumption used in this tool is that rain gardens will be installed at a neighborhood scale, therefore providing economies of scale. The WERF neighborhood discount factor (50%) was applied to give a value per acre treated of \$69,914.

The base facility cost of \$42,254 per acre (effective drainage area) for curb-contained bioretention is used for constructed wetlands.

Kieser & Associates, LLC

#### RESULTS

The following assumptions were used for obtaining results presented in Table 4 for watershed-wide BMP applications in the Black River Watershed:

- Grass swales, extended detention basins and wet retention basins were applied to treat 50% of the total urban area (all urban land uses included).
- Rain gardens were applied to treat 10% of the urban area including LD Residential, HD Residential, Commercial and Industrial. This BMP is not commonly used to treat runoff from roads/parking lots.
- Constructed wetlands were applied to treat 50% of the urban area including LD Residential, HD Residential, Commercial and Industrial. This BMP is not commonly used to treat runoff from roads/parking lots.

|                                 | Load  | Reductions | (lbs/yr)  | Total cost | Cost (\$) per lb reduced |        |     |  |
|---------------------------------|-------|------------|-----------|------------|--------------------------|--------|-----|--|
| BMP                             | ТР    | TN         | TSS       | (\$)       | TP                       | TN     | TSS |  |
| Grass Swale                     | 1,433 | 22,509     | 889,391   | 18,326,250 | 12,783                   | 814    | 21  |  |
| Extended Dry<br>Detention Basin | 1,075 | 25,011     | 1,000,580 | 18,326,250 | 17,043                   | 733    | 18  |  |
| Wet Retention<br>Pond           | 3,226 | 7,503      | 1,000,590 | 18,326,250 | 5,681                    | 2,442  | 18  |  |
| Rain Garden                     | 135   | 1,417      | 31,594    | 25,147,108 | 186,131                  | 17,747 | 796 |  |
| Constructed<br>Wetlands         | 331   | 2,126      | 120,056   | 92,221,996 | 278,612                  | 43,389 | 768 |  |

#### Table 4: BMP load reductions and costs in the Black River Watershed.

Of the various BMPs examined here, the most cost-effective BMP for TP is a wet retention pond. The most cost-effective BMP for TN is a dry detention basin. The most efficient BMPs for TSS are extended dry detention and wet retention basins.

It should be noted that these results only provide coarse estimates of cost and load reductions as BMPs were applied watershed-wide without taking into account site-specific analyses, local construction costs nor land acquisition costs.

Kieser & Associates, LLC

#### References

Kieser & Associates. 2008. Urban Build-Out and Stormwater BMP Analysis in the Paw Paw River Watershed. Prepared for the Southwest Michigan Planning Commission.

Kieser & Associates, LLC. 2009. Urban Build-Out Analysis for the Black River Watershed (draft). Prepared for the Southwest Michigan Planning Commission (public release pending).

U.S. Environmental Protection Agency (EPA). 2005. National Management Measures to Control Nonpoint Source Pollution from Urban Areas.

State of Michigan Office of Regulatory Reform (MI-ORR). 2002. Part 30 - Water Quality Trading Rules. Available at: <u>http://www.state.mi.us/orr/emi/arcrules.asp?type=Numeric&id=1999&subID=</u> <u>1999036+EQ&subCat=Admincode.</u>

Water Environment Research Foundation. 2009a. User's Guide to the BMP and LID Whole Life Cost Models version 2.0. Available at:

http://www.werf.org/AM/Template.cfm?Section=Research\_Profile&Template=/CustomSource/Research/P ublicationProfile.cfm&id=SW2R08

Water Environment Research Foundation. 2009b. BMP and LID Whole Life Cost Models Excel Worksheets for Extended Detention Ponds, Retention Ponds, Swales. <u>Available at:</u> <u>http://www.werf.org/AM/Template.cfm?Section=Research\_Profile&Template=/CustomSource/Research/PublicationProfile.cfm&id=SW2R08</u>

Kieser & Associates, LLC

#### APPENDIX A

#### DEFINITION OF BMPS

All definitions below were taken from the EPA "National Menu of Stormwater Best Management Practices" website (<u>http://cfpub.epa.gov/npdes/stormwater/menuofbmps/index.cfm</u>).

**Extended Dry Detention:** Dry detention ponds (a.k.a. dry ponds, extended detention basins, detention ponds, extended detention ponds) are basins whose outlets have been designed to detain stormwater runoff for some minimum time (e.g., 24 hours) to allow particles and associated pollutants to settle. Unlike wet ponds, these facilities do not have a large permanent pool of water. However, they are often designed with small pools at the inlet and outlet of the basin. They can also be used to provide flood control by including additional flood detention storage.

Wet Detention: Wet ponds (a.k.a. stormwater ponds, wet retention ponds, wet extended detention ponds) are constructed basins that have a permanent pool of water throughout the year (or at least throughout the wet season). Ponds treat incoming stormwater runoff by allowing particles to settle and algae to take up nutrients. The primary removal mechanism is settling as stormwater runoff resides in this pool, and pollutant uptake, particularly of nutrients, also occurs through biological activity in the pond. Traditionally, wet ponds have been widely used as stormwater best management practices.

Swales: The term swale (a.k.a. grassed channel, dry swale, wet swale, biofilter, or bioswale) refers to a vegetated, open-channel management practices designed specifically to treat and attenuate stormwater runoff for a specified water quality volume. As stormwater runoff flows along these channels, it is treated through vegetation slowing the water to allow sedimentation, filtering through a subsoil matrix, and/or infiltration into the underlying soils. Variations of the grassed swale include the grassed channel, dry swale, and wet swale. The specific design features and methods of treatment differ in each of these designs, but all are improvements on the traditional drainage ditch. These designs incorporate modified geometry and other features for use of the swale as a treatment and conveyance practice.

Rain garden: Bioretention areas, or rain gardens, are landscaping features adapted to provide on-site treatment of stormwater runoff. They are commonly located in parking lot islands or within small pockets of residential land uses. Surface runoff is directed into shallow, landscaped depressions. These depressions are designed to incorporate many of the pollutant removal mechanisms that operate in forested ecosystems. During storms, runoff ponds above the mulch and soil in the system. Runoff from larger storms is generally diverted past the facility to the storm drain system. The remaining runoff filters through the mulch and prepared soil mix. The filtered runoff can be collected in a perforated underdrain and returned to the storm drain system.

**Constructed wetlands:** Stormwater wetlands (a.k.a. constructed wetlands) are structural practices similar to wet ponds that incorporate wetland plants into the design. As stormwater runoff flows through the wetland, pollutant removal is achieved through settling and biological uptake within the

Kieser & Associates, LLC

practice. Wetlands are among the most effective stormwater practices in terms of pollutant removal and they also offer aesthetic and habitat value. Although natural wetlands can sometimes be used to treat stormwater runoff that has been properly pretreated, stormwater wetlands are fundamentally different from natural wetland systems. Stormwater wetlands are designed specifically for the purpose of treating stormwater runoff, and typically have less biodiversity than natural wetlands in terms of both plant and animal life. Several design variations of the stormwater wetland exist, each design differing in the relative amounts of shallow and deep water, and dry storage above the wetland.

Kieser & Associates, LLC

### **Appendix M: Watershed Inventory Sites of Concern**

These sites are all labeled with the station number from MDEQ's road-stream crossing surveys. A table with location information for these station numbers is included at the end of this appendix.

| Location | Priority<br>area | Source               | Cause                                       | Pollutant of concern |
|----------|------------------|----------------------|---------------------------------------------|----------------------|
| BR-02    | 1                | Road-stream crossing | Erosion from/around bridge, culvert or road | sediment             |
| BR-12    | 2                | Road-stream crossing | Erosion from/around bridge, culvert or road | sediment             |
| BR-14    | 2                | Road-stream crossing | Erosion from/around bridge, culvert or road | sediment             |
| BR-25    | 1                | Road-stream crossing | Improper culvert sizing and placement       | sediment             |
| BR-34    | 1                | Road-stream crossing | Erosion from/around bridge, culvert or road | sediment             |
| BRM-03   | 3                | Road-stream crossing | Improper culvert sizing and placement       | sediment             |
| BRM-15   | 3                | Road-stream crossing | Erosion from/around bridge, culvert or road | sediment             |
| BRM-18   | 3                | Road-stream crossing | Improper culvert sizing and placement       | sediment             |
| BRM-26   | 3                | Road-stream crossing | Erosion from/around bridge, culvert or road | sediment             |
| BRM-27   | 3                | Road-stream crossing | Improper culvert sizing and placement       | sediment             |
| BRM-28   | 3                | Road-stream crossing | Erosion from/around bridge, culvert or road | sediment             |
| BRM-28   | 3                | Road-stream crossing | Improper culvert sizing and placement       | sediment             |
| BRM-29   | 3                | Road-stream crossing | Erosion from/around bridge, culvert or road | sediment             |
| BRM-35   | 3                | Road-stream crossing | Improper culvert sizing and placement       | sediment             |
| BRM-35   | 3                | Road-stream crossing | Erosion from/around bridge, culvert or road | sediment             |
| BRM-43   | 3                | Road-stream crossing | Improper culvert sizing and placement       | sediment             |
| BRM-45   | 3                | Road-stream crossing | Improper culvert sizing and placement       | sediment             |
| BRM-45   | 3                | Road-stream crossing | Erosion from/around bridge, culvert or road | sediment             |
| BRM-48   | 3                | Road-stream crossing | Erosion from/around bridge, culvert or road | sediment             |
| BRM-50   | 3                | Road-stream crossing | Erosion from/around bridge, culvert or road | sediment             |
| BRM-52   | 2                | Road-stream crossing | Erosion from/around bridge, culvert or road | sediment             |
| BRM-53   | 2                | Road-stream crossing | Improper culvert sizing and placement       | sediment             |
| BRM-55   | 2                | Road-stream crossing | Improper culvert sizing and placement       | sediment             |
| BRM-62   | 3                | Road-stream crossing | Improper culvert sizing and placement       | sediment             |
| BRN-02   | 3                | Road-stream crossing | Erosion from/around bridge, culvert or road | sediment             |
| BRN-06   | 3                | Road-stream crossing | Erosion from/around bridge, culvert or road | sediment             |
| BRN-12   | 2                | Road-stream crossing | Erosion from/around bridge, culvert or road | sediment             |
| BRN-20   | 2                | Road-stream crossing | Improper culvert sizing and placement       | sediment             |
| BRN-31   | 2                | Road-stream crossing | Erosion from/around bridge, culvert or road | sediment             |
| BRN-32   | 2                | Road-stream crossing | Erosion from/around bridge, culvert or road | sediment             |
| BRN-37   | 2                | Road-stream crossing | Improper culvert sizing and placement       | sediment             |
| BRS-08   | 1                | Road-stream crossing | Improper culvert sizing and placement       | sediment             |
| BRS-10   | 1                | Road-stream crossing | Improper culvert sizing and placement       | sediment             |
| BRS-13   | 1                | Road-stream crossing | Erosion from/around bridge, culvert or road | sediment             |
| BRS-14   | 1                | Road-stream crossing | Improper culvert sizing and placement       | sediment             |
| BRS-18   | 1                | Road-stream crossing | Improper culvert sizing and placement       | sediment             |
| BRS-20   | 2                | Road-stream crossing | Erosion from/around bridge, culvert or road | sediment             |
| BRS-21   | 2                | Road-stream crossing | Erosion from/around bridge, culvert or road | sediment             |
| BRS-24   | 2                | Road-stream crossing | Gravel road grading                         | sediment             |
| BRS-26   | 2                | Road-stream crossing | Erosion from/around bridge, culvert or road | sediment             |
| BRS-30   | 1                | Road-stream crossing | Erosion from/around bridge, culvert or road | sediment             |
| BRS-31   | 1                | Road-stream crossing | Improper culvert sizing and placement       | sediment             |
| BRS-45   | 2                | Road-stream crossing | Improper culvert sizing and placement       | sediment             |

### **Road-stream crossing sites of concern**

| BRS-53 | 1 | Road-stream crossing | Erosion from/around bridge, culvert or road | sediment |
|--------|---|----------------------|---------------------------------------------|----------|
| BRS-55 | 1 | Road-stream crossing | Erosion from/around bridge, culvert or road | sediment |
|        | 1 |                      | Improper culvert sizing and placement;      |          |
| BRS-57 |   | Road-stream crossing | erosion from/around bridge, culvert or road | sediment |
| BRS-58 | 1 | Road-stream crossing | Improper culvert sizing and placement       | sediment |
| BRS-62 | 2 | Road-stream crossing | Improper culvert sizing and placement       | sediment |
| BRS-62 | 2 | Road-stream crossing | Erosion from/around bridge, culvert or road | sediment |

### Streambank erosion sites of concern

| Location       | Priority | Source             | Causes                            | Pollutant of |
|----------------|----------|--------------------|-----------------------------------|--------------|
|                | area     |                    |                                   | concern      |
| BR-02          | 1        | Streambank erosion | Human access                      | sediment     |
| BR-03          | 1        | Streambank erosion |                                   | sediment     |
| BR-04          | 2        | Streambank erosion |                                   | sediment     |
| BR-05          | 2        | Streambank erosion | Removal of streambank vegetation  | sediment     |
| BR-05 to BR-13 | 2        | Streambank erosion |                                   | sediment     |
| BR-08          | 2        | Streambank erosion |                                   | sediment     |
| BR-11          | 2        | Streambank erosion |                                   | sediment     |
| BR-13          | 2        | Streambank erosion |                                   | sediment     |
| BR-14          | 2        | Streambank erosion |                                   | sediment     |
| BR-18          | 1        | Streambank erosion |                                   | sediment     |
| BR-19          | 1        | Streambank erosion |                                   | sediment     |
| BR-21          | 1        | Streambank erosion | Human access                      | sediment     |
| BR-27          | 1        | Streambank erosion |                                   | sediment     |
| BRM-02         | 3        | Streambank erosion | Human access                      | sediment     |
| BRM-04         | 3        | Streambank erosion |                                   | sediment     |
| BRM-08         | 3        | Streambank erosion |                                   | sediment     |
| BRM-14         | 3        | Streambank erosion |                                   | sediment     |
| BRM-21         | 3        | Streambank erosion |                                   | sediment     |
| BRM-25         | 3        | Streambank erosion |                                   | sediment     |
| BRM-32         | 3        | Streambank erosion |                                   | sediment     |
| BRM-36         | 3        | Streambank erosion |                                   | sediment     |
| BRM-65         | 3        | Streambank erosion | Removal of streambank vegetation  | sediment     |
| BRN-01         | 3        | Streambank erosion |                                   | sediment     |
| BRN-03         | 3        | Streambank erosion | Site development and construction | sediment     |
| BRN-04         | 3        | Streambank erosion |                                   | sediment     |
| BRN-05         | 3        | Streambank erosion |                                   | sediment     |
| BRN-11         | 2        | Streambank erosion |                                   | sediment     |
| BRS-02         | 1        | Streambank erosion |                                   | sediment     |
| BRS-19         | 1        | Streambank erosion |                                   | sediment     |
| BRS-26         | 2        | Streambank erosion |                                   | sediment     |
| BRS-27         | 2        | Streambank erosion |                                   | sediment     |
| BRS-30         | 1        | Streambank erosion |                                   | sediment     |
| BRS-32         | 1        | Streambank erosion |                                   | sediment     |
| BRS-36         | 1        | Streambank erosion |                                   | sediment     |
| BRS-42         | 2        | Streambank erosion |                                   | sediment     |
| BRS-55 to      | 1        |                    |                                   |              |
| BRS-57         |          | Streambank erosion |                                   | sediment     |
| DDC 57         | 1        | Cture with a s 1   | Removal of streambank vegetation; | and in the   |
| BRS-57         | 1        | Streambank erosion | human access                      | sediment     |
| BRS-60         | 1        | Streambank erosion |                                   | sediment     |

| BRS-63        | 2 | Streambank erosion |                                   | sediment |
|---------------|---|--------------------|-----------------------------------|----------|
| BRS-64        | 2 | Streambank erosion |                                   | sediment |
| BRS-40.5      | 2 |                    |                                   |          |
| (Lion's Park- |   |                    | Removal of streambank vegetation; |          |
| Bangor)       |   | Streambank erosion | human access                      | sediment |

## Agricultural sites of concern

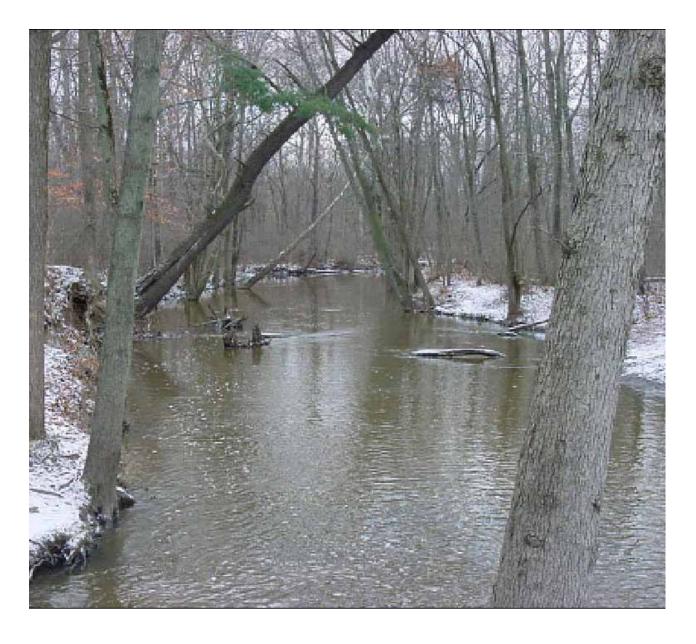
| Location         | Priority | Source                    | Pollutant                                |
|------------------|----------|---------------------------|------------------------------------------|
|                  | area     |                           |                                          |
| BR-09            | 2        | Livestock                 | sediment, bacteria/pathogens, nutrients  |
| BR-31            | 1        | Lack of vegetative buffer | sediment, nutrients, chemical pollutants |
| BR-34            | 1        | Lack of vegetative buffer | sediment, nutrients, chemical pollutants |
| BRM-11           | 3        | Lack of vegetative buffer | sediment, nutrients, chemical pollutants |
| BRM-34           | 3        | Livestock                 | sediment, bacteria/pathogens, nutrients  |
| BRM-41           | 3        | Livestock                 | sediment, bacteria/pathogens, nutrients  |
| BRM-56           | 2        | Lack of vegetative buffer | sediment, nutrients, chemical pollutants |
| BRM-59           | 2        | Lack of vegetative buffer | sediment, nutrients, chemical pollutants |
| BRM-63           | 3        | Lack of vegetative buffer | sediment, nutrients, chemical pollutants |
| BRM-67           | 3        | Livestock                 | sediment, bacteria/pathogens, nutrients  |
| BRN-09           | 3        | Lack of vegetative buffer | sediment, nutrients, chemical pollutants |
| BRN-13           | 2        | Lack of vegetative buffer | sediment, nutrients, chemical pollutants |
| BRN-16           | 2        | Lack of vegetative buffer | sediment, nutrients, chemical pollutants |
| BRN-17           | 2        | Lack of vegetative buffer | sediment, nutrients, chemical pollutants |
| BRN-17           | 2        |                           |                                          |
| (downstream)     |          | Livestock                 | bacteria/pathogens, nutrients            |
| BRN-20           | 2        | Lack of vegetative buffer | sediment, nutrients, chemical pollutants |
| BRN-21           | 2        | Lack of vegetative buffer | sediment, nutrients, chemical pollutants |
| BRN-22           | 2        | Lack of vegetative buffer | sediment, nutrients, chemical pollutants |
| BRN-27           | 2        | Lack of vegetative buffer | sediment, nutrients, chemical pollutants |
| BRN-28           | 2        | Lack of vegetative buffer | sediment, nutrients, chemical pollutants |
| BRN-29           | 2        | Lack of vegetative buffer | sediment, nutrients, chemical pollutants |
| BRN-30           | 2        | Lack of vegetative buffer | sediment, nutrients, chemical pollutants |
| BRN-31           | 2        | Lack of vegetative buffer | sediment, nutrients, chemical pollutants |
| BRN-32           | 2        | Lack of vegetative buffer | sediment, nutrients, chemical pollutants |
| BRN-33           | 2        | Lack of vegetative buffer | sediment, nutrients, chemical pollutants |
| BRN-35           | 2        | Livestock                 | sediment, bacteria/pathogens, nutrients  |
| BRS-19           | 1        | Lack of vegetative buffer | sediment, nutrients, chemical pollutants |
| BRS-23           | 2        | Lack of vegetative buffer | sediment, nutrients, chemical pollutants |
| BRS-34           | 1        | Lack of vegetative buffer | sediment, nutrients, chemical pollutants |
| BRS-47           | 2        | Lack of vegetative buffer | sediment, nutrients, chemical pollutants |
| BRS-51           | 1        | Livestock                 | sediment, bacteria/pathogens, nutrients  |
| BRS-61           | 1        | Lack of vegetative buffer | sediment, nutrients, chemical pollutants |
| BRS-65           | 2        | Lack of vegetative buffer | sediment, nutrients, chemical pollutants |
| Munn Lk.         | 1        |                           |                                          |
| Drain/3850th St. |          | Livestock                 | nutrients, bacteria/pathogens            |

| Location | Priority<br>area | Source                    | Causes                           | Pollutant of concern                        |
|----------|------------------|---------------------------|----------------------------------|---------------------------------------------|
|          | 1                | Lack of vegetative        |                                  | sediment, nutrients, chemical               |
| BR-01    | 1                | buffer                    | Removal of streambank vegetation | pollutants                                  |
| Dit 01   | 1                |                           | Change in hydrology (increase in | sediment, nutrients, chemical               |
| BR-02    |                  | Stormwater runoff         | hardened surfaces)               | pollutants                                  |
|          | 2                | Lack of vegetative        |                                  | sediment, nutrients, chemical               |
| BR-12    |                  | buffer                    | Removal of streambank vegetation | pollutants                                  |
|          | 1                | Lack of vegetative        |                                  | sediment, nutrients, chemical               |
| BR-32    |                  | buffer                    | Removal of streambank vegetation | pollutants                                  |
|          | 3                | Lack of vegetative        |                                  | sediment, nutrients, chemical               |
| BRM-10   |                  | buffer                    | Removal of streambank vegetation | pollutants                                  |
|          | 3                | Lack of vegetative        |                                  | sediment, nutrients, chemical               |
| BRM-13   |                  | buffer                    | Removal of streambank vegetation | pollutants                                  |
|          | 3                | Lack of vegetative        |                                  | sediment, nutrients, chemical               |
| BRM-29   |                  | buffer                    | Removal of streambank vegetation | pollutants                                  |
| DD1 ( 42 | 3                | Lack of vegetative        |                                  | sediment, nutrients, chemical               |
| BRM-43   | 2                | buffer                    | Removal of streambank vegetation | pollutants                                  |
|          | 3                | Lack of vegetative        |                                  | sediment, nutrients, chemical               |
| BRM-64   | 2                | buffer                    | Removal of streambank vegetation | pollutants                                  |
| DDM 60   | 3                | Lack of vegetative buffer | Domoval of streambank vagatation | sediment, nutrients, chemical               |
| BRM-69   | 3                | Lack of vegetative        | Removal of streambank vegetation | pollutants<br>sediment, nutrients, chemical |
| BRM-72   | 3                | buffer                    | Removal of streambank vegetation | pollutants                                  |
| DRIVI-72 | 3                | Lack of vegetative        | Removal of streambank vegetation | sediment, nutrients, chemical               |
| BRM-73   | 5                | buffer                    | Removal of streambank vegetation | pollutants                                  |
| DIGN 75  | 3                | Lack of vegetative        | Removal of streambank vegetation | sediment, nutrients, chemical               |
| BRN-10   | 5                | buffer                    | Removal of streambank vegetation | pollutants                                  |
|          | 1                | Lack of vegetative        |                                  | sediment, nutrients, chemical               |
| BRS-16   |                  | buffer                    | Removal of streambank vegetation | pollutants                                  |
|          | 1                | Lack of vegetative        | C                                | sediment, nutrients, chemical               |
| BRS-30   |                  | buffer                    | Removal of streambank vegetation | pollutants                                  |
|          | 1                |                           | Poor stormwater management       | sediment, nutrients, chemical               |
| BRS-30   |                  | Stormwater runoff         | practices                        | pollutants                                  |
|          | 2                | Lack of vegetative        |                                  | sediment, nutrients, chemical               |
| BRS-40.5 |                  | buffer                    | Removal of streambank vegetation | pollutants                                  |
|          | 2                | Lack of vegetative        |                                  | sediment, nutrients, chemical               |
| BRS-48   |                  | buffer                    | Removal of streambank vegetation | pollutants                                  |
|          | 1                | Lack of vegetative        | Poorly maintained vegetative     | sediment, nutrients, chemical               |
| BRS-57   |                  | buffer                    | buffers                          | pollutants                                  |
| DD0 50   | 1                |                           | Poor stormwater management       | sediment, nutrients, chemical               |
| BRS-58   |                  | Stormwater runoff         | practices                        | pollutants                                  |
|          | 2                | Lack of vegetative        |                                  | sediment, nutrients, chemical               |
| BRS-66   | 2                | buffer                    | Removal of streambank vegetation | pollutants                                  |
| DDG (7   | 2                | Lack of vegetative        | Democrate Cotore 1 1 1           | sediment, nutrients, chemical               |
| BRS-67   |                  | buffer                    | Removal of streambank vegetation | pollutants                                  |

### Residential and municipal sites of concern

### **Road-Stream Crossing Locations**

| CountyTownshipVan BurenSouth HaveVan BurenSouth HaveAlleganCascoVan BurenSouth HaveVan BurenGenevaVan BurenCovertVan BurenCovertVan BurenCovertVan BurenCovertVan BurenCovertVan BurenCovertVan BurenCovertVan BurenCovertVan BurenCovertVan BurenGenevaVan BurenCovertVan BurenCovertVan BurenGenevaVan BurenGenevaVan BurenCovertVan BurenGenevaVan BurenGenevaVan BurenGenevaVan BurenCovertVan Bu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | en BR-02<br>BR-03<br>BR-03<br>BR-04<br>BR-05<br>BR-06<br>BR-06<br>BR-07<br>BR-08<br>BR-09<br>BR-10<br>BR-11<br>BR-11<br>BR-12<br>BR-13<br>BR-14<br>BR-15                                                                                                                                                       | RoadBlue Star Hwy73rd StBaseline Rd73.5th St70th St68th St67th StBaseline Rd66th St64th StCR 388CR 687CR 3888th AveCR 384M-43M-4316th Ave                                                                                           | Waterbody name         Black River         Black River         Black River         Black River         Black River         Butternut Creek         Tripp and Extension Drain         Butternut Creek         Butternut Creek         Black River         Black River         Black River         Black River         Black River | Latitude<br>42.41537<br>42.25244<br>42.41688<br>42.41688<br>42.4153<br>42.40632<br>42.40632<br>42.41681<br>42.2515<br>42.24886<br>42.24757<br>42.24238<br>42.23599<br>42.24242<br>42.23366<br>42.22481 | Longitude<br>-86.2578<br>-86.23991<br>-86.22546<br>-86.20744<br>-86.19761<br>-86.11268<br>-86.11268<br>-86.10098<br>-86.12206<br>-86.12206<br>-86.13162<br>-86.13162<br>-86.12849<br>-86.1246 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Van BurenSouth HaveAlleganCascoVan BurenSouth HaveVan BurenGenevaVan BurenCovertVan Buren                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | en BR-02<br>BR-03<br>BR-03<br>BR-04<br>BR-05<br>BR-06<br>BR-06<br>BR-07<br>BR-08<br>BR-09<br>BR-10<br>BR-11<br>BR-11<br>BR-12<br>BR-13<br>BR-13<br>BR-14<br>BR-15<br>en BR-16<br>BR-17<br>BR-18<br>BR-19                                                                                                       | 73rd St         Baseline Rd         73.5th St         70th St         68th St         67th St         Baseline Rd         66th St         64th St         CR 388         CR 388         8th Ave         CR 384         M-43         | Black River         Black River         Black River         Butternut Creek         Tripp and Extension Drain         Butternut Creek         Butternut Creek         Black River         Black River         Black River         Black River         Unnamed Tributary to Main Branch Black Riv                                 | 42.25244<br>42.41688<br>42.4153<br>42.40632<br>42.41681<br>42.2515<br>42.24886<br>42.24757<br>42.24238<br>42.23599<br>42.24242<br>42.23366<br>42.22481                                                 | -86.14595<br>-86.23991<br>-86.22546<br>-86.20744<br>-86.19761<br>-86.11639<br>-86.11268<br>-86.10098<br>-86.12206<br>-86.12206<br>-86.11261<br>-86.13162<br>-86.12849                         |
| AlleganCascoVan BurenSouth HaveVan BurenGenevaVan BurenCovertVan BurenGeneva                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BR-03           en         BR-04           BR-05         BR-05           BR-06         BR-07           BR-08         BR-09           BR-10         BR-11           BR-12         BR-13           BR-13         BR-14           BR-15         BR-16           BR-17         BR-18           BR-19         BR-19 | Baseline Rd           73.5th St           70th St           68th St           67th St           Baseline Rd           66th St           64th St           CR 388           CR 388           8th Ave           CR 384           M-43 | Black River         Black River         Butternut Creek         Tripp and Extension Drain         Butternut Creek         Butternut Creek         Black River         Black River         Black River         Unnamed Tributary to Main Branch Black Riv                                                                         | 42.41688<br>42.4153<br>42.40632<br>42.41681<br>42.2515<br>42.24886<br>42.24757<br>42.24238<br>42.23599<br>42.24242<br>42.23366<br>42.22481                                                             | -86.23991<br>-86.22546<br>-86.20744<br>-86.19761<br>-86.11639<br>-86.11268<br>-86.10098<br>-86.12206<br>-86.12206<br>-86.11261<br>-86.13162<br>-86.12849                                      |
| Van BurenSouth HaveVan BurenGenevaVan BurenCovertVan BurenCovert <td>en BR-04<br/>BR-05<br/>BR-06<br/>BR-07<br/>BR-08<br/>BR-09<br/>BR-10<br/>BR-11<br/>BR-12<br/>BR-12<br/>BR-13<br/>BR-13<br/>BR-14<br/>BR-15<br/>en BR-16<br/>BR-17<br/>BR-18<br/>BR-19</td> <td>73.5th St<br/>70th St<br/>68th St<br/>67th St<br/>Baseline Rd<br/>66th St<br/>64th St<br/>CR 388<br/>CR 687<br/>CR 388<br/>8th Ave<br/>CR 384<br/>M-43<br/>M-43</td> <td>Black River         Black River         Butternut Creek         Tripp and Extension Drain         Butternut Creek         Butternut Creek         Black River         Black River         Black River         Unnamed Tributary to Main Branch Black Riv</td> <td>42.41688<br/>42.4153<br/>42.40632<br/>42.41681<br/>42.2515<br/>42.24886<br/>42.24757<br/>42.24238<br/>42.23599<br/>42.24242<br/>42.23366<br/>42.22481</td> <td>-86.23991<br/>-86.22546<br/>-86.20744<br/>-86.19761<br/>-86.11639<br/>-86.11268<br/>-86.10098<br/>-86.12206<br/>-86.12206<br/>-86.11261<br/>-86.13162<br/>-86.12849</td> | en BR-04<br>BR-05<br>BR-06<br>BR-07<br>BR-08<br>BR-09<br>BR-10<br>BR-11<br>BR-12<br>BR-12<br>BR-13<br>BR-13<br>BR-14<br>BR-15<br>en BR-16<br>BR-17<br>BR-18<br>BR-19                                                                                                                                           | 73.5th St<br>70th St<br>68th St<br>67th St<br>Baseline Rd<br>66th St<br>64th St<br>CR 388<br>CR 687<br>CR 388<br>8th Ave<br>CR 384<br>M-43<br>M-43                                                                                  | Black River         Black River         Butternut Creek         Tripp and Extension Drain         Butternut Creek         Butternut Creek         Black River         Black River         Black River         Unnamed Tributary to Main Branch Black Riv                                                                         | 42.41688<br>42.4153<br>42.40632<br>42.41681<br>42.2515<br>42.24886<br>42.24757<br>42.24238<br>42.23599<br>42.24242<br>42.23366<br>42.22481                                                             | -86.23991<br>-86.22546<br>-86.20744<br>-86.19761<br>-86.11639<br>-86.11268<br>-86.10098<br>-86.12206<br>-86.12206<br>-86.11261<br>-86.13162<br>-86.12849                                      |
| Van BurenGenevaVan BurenCovertVan BurenCovert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BR-05           BR-06           BR-07           BR-08           BR-09           BR-10           BR-11           BR-12           BR-13           BR-14           BR-15           BR-16           BR-17           BR-18           BR-19                                                                          | 70th St<br>68th St<br>67th St<br>Baseline Rd<br>66th St<br>64th St<br>CR 388<br>CR 687<br>CR 388<br>8th Ave<br>CR 384<br>M-43<br>M-43                                                                                               | Black River         Butternut Creek         Tripp and Extension Drain         Tripp and Extension Drain         Tripp and Extension Drain         Tripp and Extension Drain         Butternut Creek         Butternut Creek         Black River         Black River         Black River         Unnamed Tributary to Main Branch Black Riv                                                                                                                               | 42.4153<br>42.40632<br>42.41681<br>42.2515<br>42.24886<br>42.24757<br>42.24238<br>42.23599<br>42.24242<br>42.23366<br>42.22481                                                                         | -86.22546<br>-86.20744<br>-86.19761<br>-86.11639<br>-86.11268<br>-86.10098<br>-86.10098<br>-86.12206<br>-86.12206<br>-86.11261<br>-86.13162<br>-86.12849                                      |
| Van BurenGenevaVan BurenCovertVan BurenCovert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BR-06           BR-07           BR-08           BR-09           BR-10           BR-11           BR-12           BR-13           BR-14           BR-15           en           BR-16           BR-18           BR-19                                                                                             | 68th St           67th St           Baseline Rd           66th St           64th St           CR 388           CR 687           CR 388           8th Ave           CR 384           M-43                                            | Butternut Creek         Tripp and Extension Drain         Tripp and Extension Drain         Tripp and Extension Drain         Tripp and Extension Drain         Butternut Creek         Black River         Black River         Black River         Black River         Unnamed Tributary to Main Branch Black Riv                                                                                                                                                       | 42.40632<br>42.41681<br>42.2515<br>42.24886<br>42.24757<br>42.24238<br>42.23599<br>42.24242<br>42.23366<br>42.22481                                                                                    | -86.20744<br>-86.19761<br>-86.11639<br>-86.11268<br>-86.10098<br>-86.12206<br>-86.12206<br>-86.11261<br>-86.13162<br>-86.12849                                                                |
| Van BurenGenevaVan BurenCovertVan BurenCovert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BR-07           BR-08           BR-09           BR-10           BR-11           BR-12           BR-13           BR-14           BR-15           BR-16           BR-17           BR-18           BR-19                                                                                                          | 67th St<br>Baseline Rd<br>66th St<br>64th St<br>CR 388<br>CR 687<br>CR 388<br>8th Ave<br>CR 384<br>M-43<br>M-43                                                                                                                     | Tripp and Extension DrainTripp and Extension DrainTripp and Extension DrainTripp and Extension DrainButternut CreekButternut CreekBlack RiverBlack RiverBlack RiverBlack RiverUnnamed Tributary to Main Branch Black Riv                                                                                                                                                                                                                                                 | 42.41681<br>42.2515<br>42.24886<br>42.24757<br>42.24238<br>42.23599<br>42.24242<br>42.23366<br>42.22481                                                                                                | -86.19761<br>-86.11639<br>-86.11268<br>-86.10098<br>-86.12206<br>-86.12206<br>-86.11261<br>-86.13162<br>-86.12849                                                                             |
| Van BurenGenevaVan BurenBangorVan BurenCovertVan BurenCovertVan BurenCovertVan BurenCovertVan BurenCovertVan BurenCovertVan BurenBangorVan BurenCovertVan BurenGeneva                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BR-08           BR-09           BR-10           BR-11           BR-12           BR-13           BR-14           BR-15           en           BR-16           BR-17           BR-18           BR-19                                                                                                             | Baseline Rd           66th St           64th St           CR 388           CR 687           CR 388           8th Ave           CR 384           M-43                                                                                | Tripp and Extension DrainTripp and Extension DrainTripp and Extension DrainButternut CreekButternut CreekBlack RiverBlack RiverBlack RiverBlack RiverUnnamed Tributary to Main Branch Black Riv                                                                                                                                                                                                                                                                          | 42.2515<br>42.24886<br>42.24757<br>42.24238<br>42.23599<br>42.24242<br>42.23366<br>42.22481                                                                                                            | -86.11639<br>-86.11268<br>-86.10098<br>-86.12206<br>-86.11261<br>-86.13162<br>-86.12849                                                                                                       |
| Van BurenGenevaVan BurenCovertVan BurenBangorVan BurenCovertVan BurenGeneva                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BR-09           BR-10           BR-11           BR-12           BR-13           BR-14           BR-15           BR-16           BR-17           BR-18           BR-19                                                                                                                                          | 66th St           64th St           CR 388           CR 687           CR 388           8th Ave           CR 384           M-43                                                                                                      | Tripp and Extension Drain<br>Tripp and Extension Drain<br>Butternut Creek<br>Butternut Creek<br>Black River<br>Black River<br>Black River<br>Unnamed Tributary to Main Branch Black Riv                                                                                                                                                                                                                                                                                  | 42.24886<br>42.24757<br>42.24238<br>42.23599<br>42.24242<br>42.23366<br>42.22481                                                                                                                       | -86.11268<br>-86.10098<br>-86.12206<br>-86.11261<br>-86.13162<br>-86.12849                                                                                                                    |
| Van BurenGenevaVan BurenCovertVan BurenBangorVan BurenCovertVan BurenGeneva                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BR-10           BR-11           BR-12           BR-13           BR-14           BR-15           BR-16           BR-17           BR-18           BR-19                                                                                                                                                          | 64th St<br>CR 388<br>CR 687<br>CR 388<br>8th Ave<br>CR 384<br>M-43<br>M-43                                                                                                                                                          | Tripp and Extension Drain<br>Butternut Creek<br>Butternut Creek<br>Black River<br>Black River<br>Black River<br>Unnamed Tributary to Main Branch Black Riv                                                                                                                                                                                                                                                                                                               | 42.24757<br>42.24238<br>42.23599<br>42.24242<br>42.23366<br>42.22481                                                                                                                                   | -86.10098<br>-86.12206<br>-86.11261<br>-86.13162<br>-86.12849                                                                                                                                 |
| Van BurenGenevaVan BurenGenevaVan BurenGenevaVan BurenGenevaVan BurenGenevaVan BurenSouth HaveVan BurenGenevaVan BurenGenevaVan BurenGenevaVan BurenGenevaVan BurenGenevaVan BurenGenevaVan BurenGenevaVan BurenGenevaVan BurenGenevaVan BurenBangorVan BurenBangorVan BurenCovertVan BurenGeneva                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BR-11           BR-12           BR-13           BR-14           BR-15           BR-16           BR-17           BR-18           BR-19                                                                                                                                                                          | CR 388<br>CR 687<br>CR 388<br>8th Ave<br>CR 384<br>M-43<br>M-43                                                                                                                                                                     | Butternut Creek<br>Butternut Creek<br>Black River<br>Black River<br>Black River<br>Unnamed Tributary to Main Branch Black Riv                                                                                                                                                                                                                                                                                                                                            | 42.24238<br>42.23599<br>42.24242<br>42.23366<br>42.22481                                                                                                                                               | -86.12206<br>-86.11261<br>-86.13162<br>-86.12849                                                                                                                                              |
| Van BurenGenevaVan BurenGenevaVan BurenGenevaVan BurenGenevaVan BurenSouth HaveVan BurenGenevaVan BurenCovertVan BurenGeneva                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BR-12           BR-13           BR-14           BR-15           BR-16           BR-17           BR-18           BR-19                                                                                                                                                                                          | CR 687<br>CR 388<br>8th Ave<br>CR 384<br>M-43<br>M-43                                                                                                                                                                               | Butternut Creek         Black River         Black River         Black River         Unnamed Tributary to Main Branch Black Riv                                                                                                                                                                                                                                                                                                                                           | 42.23599<br>42.24242<br>42.23366<br>42.22481                                                                                                                                                           | -86.11261<br>-86.13162<br>-86.12849                                                                                                                                                           |
| Van BurenGenevaVan BurenGenevaVan BurenGenevaVan BurenSouth HaveVan BurenGenevaVan BurenGenevaVan BurenGenevaVan BurenGenevaVan BurenGenevaVan BurenGenevaVan BurenGenevaVan BurenGenevaVan BurenBorevaVan BurenCovertVan BurenBangorVan BurenCovertVan BurenGeneva                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BR-13           BR-14           BR-15           en         BR-16           BR-17           BR-18           BR-19                                                                                                                                                                                               | CR 388<br>8th Ave<br>CR 384<br>M-43<br>M-43                                                                                                                                                                                         | Black River<br>Black River<br>Black River<br>Unnamed Tributary to Main Branch Black Riv                                                                                                                                                                                                                                                                                                                                                                                  | 42.24242<br>42.23366<br>42.22481                                                                                                                                                                       | -86.13162<br>-86.12849                                                                                                                                                                        |
| Van BurenGenevaVan BurenGenevaVan BurenSouth HaveVan BurenGenevaVan BurenGenevaVan BurenGenevaVan BurenGenevaVan BurenGenevaVan BurenGenevaVan BurenGenevaVan BurenBangorVan BurenBangorVan BurenCovertVan BurenGeneva                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BR-14<br>BR-15<br>BR-16<br>BR-16<br>BR-17<br>BR-18<br>BR-19                                                                                                                                                                                                                                                    | 8th Ave<br>CR 384<br>M-43<br>M-43                                                                                                                                                                                                   | Black River<br>Black River<br>Unnamed Tributary to Main Branch Black Riv                                                                                                                                                                                                                                                                                                                                                                                                 | 42.23366<br>42.22481                                                                                                                                                                                   | -86.12849                                                                                                                                                                                     |
| Van BurenGenevaVan BurenSouth HaveVan BurenGenevaVan BurenGenevaVan BurenGenevaVan BurenGenevaVan BurenGenevaVan BurenGenevaVan BurenGenevaVan BurenBangorVan BurenBangorVan BurenCovertVan BurenGeneva                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BR-15<br>BR-16<br>BR-17<br>BR-18<br>BR-19                                                                                                                                                                                                                                                                      | CR 384<br>M-43<br>M-43                                                                                                                                                                                                              | Black River<br>Unnamed Tributary to Main Branch Black Riv                                                                                                                                                                                                                                                                                                                                                                                                                | 42.22481                                                                                                                                                                                               |                                                                                                                                                                                               |
| Van BurenSouth HaveVan BurenGenevaVan BurenGenevaVan BurenGenevaVan BurenGenevaVan BurenGenevaVan BurenGenevaVan BurenBangorVan BurenBangorVan BurenBangorVan BurenCovertVan BurenGeneva                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | en BR-16<br>BR-17<br>BR-18<br>BR-19                                                                                                                                                                                                                                                                            | M-43<br>M-43                                                                                                                                                                                                                        | Unnamed Tributary to Main Branch Black Riv                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                        | -86.1246                                                                                                                                                                                      |
| Van BurenGenevaVan BurenGenevaVan BurenGenevaVan BurenGenevaVan BurenGenevaVan BurenGenevaVan BurenBangorVan BurenBangorVan BurenCovertVan BurenGeneva                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BR-17<br>BR-18<br>BR-19                                                                                                                                                                                                                                                                                        | M-43                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                        |                                                                                                                                                                                               |
| Van BurenGenevaVan BurenGenevaVan BurenGenevaVan BurenGenevaVan BurenGenevaVan BurenBangorVan BurenBangorVan BurenCovertVan BurenCovert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BR-18<br>BR-19                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 42.21919                                                                                                                                                                                               | -86.13865                                                                                                                                                                                     |
| Van BurenGenevaVan BurenGenevaVan BurenGenevaVan BurenCovertVan BurenBangorVan BurenBangorVan BurenCovertVan BurenCovert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BR-19                                                                                                                                                                                                                                                                                                          | 16th Ave                                                                                                                                                                                                                            | Unnamed Tributary to Main Branch Black Riv                                                                                                                                                                                                                                                                                                                                                                                                                               | 42.21512                                                                                                                                                                                               | -86.13436                                                                                                                                                                                     |
| Van BurenGenevaVan BurenGenevaVan BurenCovertVan BurenBangorVan BurenBangorVan BurenCovertVan BurenGeneva                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                     | Cedar Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 42.2164                                                                                                                                                                                                | -86.12283                                                                                                                                                                                     |
| Van BurenGenevaVan BurenCovertVan BurenBangorVan BurenBangorVan BurenCovertVan BurenGeneva                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BR-20                                                                                                                                                                                                                                                                                                          | CR 380                                                                                                                                                                                                                              | Cedar Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 42.20776                                                                                                                                                                                               | -86.12124                                                                                                                                                                                     |
| Van BurenCovertVan BurenBangorVan BurenBangorVan BurenCovertVan BurenCovertVan BurenCovertVan BurenCovertVan BurenBangorVan BurenCovertVan BurenCovertVan BurenCovertVan BurenCovertVan BurenCovertVan BurenCovertVan BurenCovertVan BurenCovertVan BurenCovertVan BurenGeneva                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                | M-43                                                                                                                                                                                                                                | Cedar Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 42.20483                                                                                                                                                                                               | -86.12109                                                                                                                                                                                     |
| Van BurenBangorVan BurenBangorVan BurenCovertVan BurenCovertVan BurenCovertVan BurenCovertVan BurenBangorVan BurenCovertVan BurenCovertVan BurenCovertVan BurenCovertVan BurenCovertVan BurenCovertVan BurenCovertVan BurenCovertVan BurenGeneva                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BR-21                                                                                                                                                                                                                                                                                                          | 68th St                                                                                                                                                                                                                             | Cedar Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 42.20185                                                                                                                                                                                               | -86.12423                                                                                                                                                                                     |
| Van BurenBangorVan BurenCovertVan BurenCovertVan BurenCovertVan BurenCovertVan BurenBangorVan BurenCovertVan BurenCovertVan BurenCovertVan BurenCovertVan BurenCovertVan BurenGeneva                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BR-22                                                                                                                                                                                                                                                                                                          | 24th Ave                                                                                                                                                                                                                            | Cedar Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 42.19897                                                                                                                                                                                               | -86.13209                                                                                                                                                                                     |
| Van BurenBangorVan BurenCovertVan BurenCovertVan BurenCovertVan BurenCovertVan BurenBangorVan BurenCovertVan BurenCovertVan BurenCovertVan BurenCovertVan BurenCovertVan BurenGeneva                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BR-23                                                                                                                                                                                                                                                                                                          | 68th St                                                                                                                                                                                                                             | Cedar Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 42.3305                                                                                                                                                                                                | -86.2061                                                                                                                                                                                      |
| Van BurenCovertVan BurenCovertVan BurenCovertVan BurenBangorVan BurenCovertVan BurenCovertVan BurenCovertVan BurenCovertVan BurenGeneva                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BR-24                                                                                                                                                                                                                                                                                                          | 69th St                                                                                                                                                                                                                             | Cedar Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 42.19528                                                                                                                                                                                               | -86.12996                                                                                                                                                                                     |
| Van BurenCovertVan BurenCovertVan BurenCovertVan BurenBangorVan BurenCovertVan BurenCovertVan BurenGeneva                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BR-25                                                                                                                                                                                                                                                                                                          | CR 378                                                                                                                                                                                                                              | Cedar Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 42.18502                                                                                                                                                                                               | -86.14013                                                                                                                                                                                     |
| Van BurenCovertVan BurenCovertVan BurenBangorVan BurenCovertVan BurenCovertVan BurenGeneva                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BR-26                                                                                                                                                                                                                                                                                                          | 32nd Ave                                                                                                                                                                                                                            | Cedar Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 42.18061                                                                                                                                                                                               | -86.14206                                                                                                                                                                                     |
| Van BurenCovertVan BurenBangorVan BurenCovertVan BurenCovertVan BurenGeneva                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | BR-27                                                                                                                                                                                                                                                                                                          | 34th Ave                                                                                                                                                                                                                            | Cedar Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 42.17632                                                                                                                                                                                               | -86.143                                                                                                                                                                                       |
| Van BurenBangorVan BurenCovertVan BurenCovertVan BurenGeneva                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | BR-28                                                                                                                                                                                                                                                                                                          | 70th St                                                                                                                                                                                                                             | Cedar Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 42.28591                                                                                                                                                                                               | -86.22367                                                                                                                                                                                     |
| Van BurenCovertVan BurenCovertVan BurenGeneva                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BR-29                                                                                                                                                                                                                                                                                                          | 68th Ave                                                                                                                                                                                                                            | Cedar Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 42.31119                                                                                                                                                                                               | -86.1869                                                                                                                                                                                      |
| Van Buren Covert<br>Van Buren Geneva                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BR-30                                                                                                                                                                                                                                                                                                          | 36th Ave                                                                                                                                                                                                                            | Cedar Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 42.28654                                                                                                                                                                                               | -86.23765                                                                                                                                                                                     |
| Van Buren Geneva                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BR-31                                                                                                                                                                                                                                                                                                          | 40th Ave                                                                                                                                                                                                                            | Cedar Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 42.27226                                                                                                                                                                                               | -86.2429                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BR-32                                                                                                                                                                                                                                                                                                          | M-43                                                                                                                                                                                                                                | Unnamed Tributary to Cedar Creek                                                                                                                                                                                                                                                                                                                                                                                                                                         | 42.20265                                                                                                                                                                                               | -86.11844                                                                                                                                                                                     |
| Ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BR-33                                                                                                                                                                                                                                                                                                          | 66th St                                                                                                                                                                                                                             | Unnamed Tributary to Cedar Creek                                                                                                                                                                                                                                                                                                                                                                                                                                         | 42.19457                                                                                                                                                                                               | -86.11221                                                                                                                                                                                     |
| Van Buren Bangor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BR-34                                                                                                                                                                                                                                                                                                          | CR 378                                                                                                                                                                                                                              | Unnamed Tributary to Cedar Creek                                                                                                                                                                                                                                                                                                                                                                                                                                         | 42.18494                                                                                                                                                                                               | -86.11169                                                                                                                                                                                     |
| Van Buren Bangor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BR-35                                                                                                                                                                                                                                                                                                          | 34th Ave                                                                                                                                                                                                                            | Unnamed Tributary to Cedar Creek                                                                                                                                                                                                                                                                                                                                                                                                                                         | 42.17625                                                                                                                                                                                               | -86.12074                                                                                                                                                                                     |
| Allegan Casco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BRM-01                                                                                                                                                                                                                                                                                                         | 70th St                                                                                                                                                                                                                             | Middle Branch Black River                                                                                                                                                                                                                                                                                                                                                                                                                                                | 42.25851                                                                                                                                                                                               | -86.13589                                                                                                                                                                                     |
| Allegan Casco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BRM-02                                                                                                                                                                                                                                                                                                         | 68th St                                                                                                                                                                                                                             | Middle Branch Black River                                                                                                                                                                                                                                                                                                                                                                                                                                                | 42.25446                                                                                                                                                                                               | -86.12424                                                                                                                                                                                     |
| Allegan Casco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BRM-03                                                                                                                                                                                                                                                                                                         | 103rd Ave                                                                                                                                                                                                                           | Unnamed Tributary to Middle Branch Black R                                                                                                                                                                                                                                                                                                                                                                                                                               | 42.26454                                                                                                                                                                                               | -86.11717                                                                                                                                                                                     |
| Allegan Casco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BRM-04                                                                                                                                                                                                                                                                                                         | 66th St                                                                                                                                                                                                                             | Unnamed Tributary to Middle Branch Black R                                                                                                                                                                                                                                                                                                                                                                                                                               | 42.27305                                                                                                                                                                                               | -86.11258                                                                                                                                                                                     |
| Allegan Casco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BRM-05                                                                                                                                                                                                                                                                                                         | 66th St                                                                                                                                                                                                                             | Middle Branch Black River                                                                                                                                                                                                                                                                                                                                                                                                                                                | 42.26375                                                                                                                                                                                               | -86.01125                                                                                                                                                                                     |
| Allegan Casco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BRM-06                                                                                                                                                                                                                                                                                                         | 65th St                                                                                                                                                                                                                             | Middle Branch Black River                                                                                                                                                                                                                                                                                                                                                                                                                                                | 42.26604                                                                                                                                                                                               | -86.10682                                                                                                                                                                                     |
| Allegan Casco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BRM-08                                                                                                                                                                                                                                                                                                         | 104th Ave                                                                                                                                                                                                                           | Middle Branch Black River                                                                                                                                                                                                                                                                                                                                                                                                                                                | 42.26873                                                                                                                                                                                               | -86.09833                                                                                                                                                                                     |
| Allegan Casco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BRM-09                                                                                                                                                                                                                                                                                                         | 63rd St                                                                                                                                                                                                                             | Spicebush Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 42.27005                                                                                                                                                                                               | -86.09493                                                                                                                                                                                     |
| Allegan Casco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BRM-09<br>BRM-10                                                                                                                                                                                                                                                                                               | 104th Ave                                                                                                                                                                                                                           | Spicebush Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 42.26853                                                                                                                                                                                               | -86.08948                                                                                                                                                                                     |
| Allegan Lee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                | 60th St                                                                                                                                                                                                                             | Unnamed Tributary to Spicebush Creek                                                                                                                                                                                                                                                                                                                                                                                                                                     | 42.27203                                                                                                                                                                                               | -86.07743                                                                                                                                                                                     |
| Allegan Casco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                | 60th St                                                                                                                                                                                                                             | Unnamed Tributary to Spicebush Creek                                                                                                                                                                                                                                                                                                                                                                                                                                     | 42.26346                                                                                                                                                                                               | -86.0774                                                                                                                                                                                      |
| Allegan Casco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BRM-11                                                                                                                                                                                                                                                                                                         | 102nd Ave                                                                                                                                                                                                                           | Spicebush Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 42.26007                                                                                                                                                                                               | -86.08715                                                                                                                                                                                     |
| Allegan Casco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                | 60th St                                                                                                                                                                                                                             | Spicebush Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 42.25376                                                                                                                                                                                               | -86.07715                                                                                                                                                                                     |


| Van Buren | Geneva       | BRM-15           | Baseline Rd    | Spicebush Creek                            | 42.25137 | -86.06974 |
|-----------|--------------|------------------|----------------|--------------------------------------------|----------|-----------|
| Van Buren | Geneva       | BRM-16           | Phoenix Rd     | Spicebush Creek                            | 42.24592 | -86.06602 |
| Van Buren | Geneva       | BRM-17           | CR 681         | Spicebush Creek                            | 42.24267 | -86.06994 |
| Van Buren | Geneva       | BRM-17<br>BRM-18 | 58th St        | Spicebush Creek                            | 42.24207 | -86.06613 |
| Allegan   | Casco        | BRM-10<br>BRM-19 | 63rd St        | Middle Branch Black River                  | 42.27224 | -86.09487 |
| Allegan   | Casco        | BRM-19<br>BRM-20 | 62nd St        | Middle Branch Black River                  | 42.27676 | -86.08889 |
| Allegan   | Lee          | BRM-20<br>BRM-21 | 60th St        | Middle Branch Black River                  | 42.27738 | -86.06575 |
| Allegan   | Lee          | BRM-22           | 58th St        | Middle Branch Black River                  | 42.27349 | -86.06585 |
| Allegan   | Lee          | BRM-23           | 105th Ave      | Middle Branch Black River                  | 42.27738 | -86.06575 |
| Allegan   | Lee          | BRM-25           | 104th Ave      | Middle Branch Black River                  | 42.26875 | -86.05286 |
| Allegan   | Lee          | BRM-26           | 54th St        | Middle Branch Black River                  | 42.27092 | -86.03652 |
| Allegan   | Lee          | BRM-27           | 105th Ave      | Spring Brook                               | 42.27092 | -86.03652 |
| Allegan   | Lee          | BRM-28           | 50th St        | Spring Brook                               | 42.27233 | -86.01912 |
| Allegan   | Lee          | BRM-29           | 49th St        | Spring Brook                               | 42.27269 | -86.01326 |
| Allegan   | Lee          | BRM-30           | 48th St        | Spring Brook                               | 42.27045 | -86.00749 |
| Allegan   | Lee          | BRM-31           | 103rd Ave      | Middle Branch Black River                  | 42.26438 | -86.03189 |
| Allegan   | Lee          | BRM-32           | 51st St        | Middle Branch Black River                  | 42.25146 | -86.00719 |
| Allegan   | Lee          | BRM-34           | Baseline Rd    | Unnamed Tributary to Middle Branch Black R | 42.25145 | -86.00718 |
| Allegan   | Lee          | BRM-35           | 48th St        | Unnamed Tributary to Middle Branch Black R | 42.4601  | -86.00837 |
| Allegan   | Lee          | BRM-36           | 102nd Ave      | Unnamed Tributary to Middle Branch Black R | 42.26011 | -86.00835 |
| Allegan   | Cheshire     | BRM-37           | 46th St        | Unnamed Tributary to Middle Branch Black R | 42.20473 | -85.59565 |
| Allegan   | Cheshire     | BRM-38           | 44th St        | Unnamed Tributary to Middle Branch Black R | 42.4441  | -85.9735  |
| Allegan   | Cheshire     | BRM-39           | 44th St        | Unnamed Tributary to Middle Branch Black R | 42.4333  | -85.9736  |
| Van Buren | Columbia     | BRM-40           | 47.5th St      | Melvin Creek                               | 42.24548 | -86.0055  |
| Van Buren | Bloomingdale | BRM-41           | 46th St        | Melvin Creek                               | 42.24298 | -85.58641 |
| Van Buren | Bloomingdale | BRM-42           | 44th St        | Unnamed Tributary to Melvin Creek          | 42.24298 | -85.58638 |
| Van Buren | Bloomingdale | BRM-43           | 44th St        | Melvin Creek                               | 42.23714 | -85.58628 |
| Van Buren | Bloomingdale | BRM-44           | CR 665         | Melvin Creek                               | 42.2345  | -85.57453 |
| Allegan   | Lee          | BRM-45           | Baseline Rd    | Little Bear Lake Drain                     | 42.25146 | -86.00719 |
| Van Buren | Columbia     | BRM-46           | 2nd Ave        | Little Bear Lake Drain                     | 42.25146 | -86.00719 |
| Van Buren | Columbia     | BRM-47           | CR 388         | Little Bear Lake Drain                     | 42.24047 | -86.01285 |
| Van Buren | Columbia     | BRM-48           | 48.5 St        | Little Bear Lake Drain                     | 42.25146 | -86.00719 |
| Van Buren | Columbia     | BRM-49           | 8th Ave        | Little Bear Lake Drain                     | 42.25146 | -86.00719 |
| Allegan   | Lee          | BRM-50           | 55th St        | Barber Creek                               | 42.2675  | -86.0484  |
| Allegan   | Lee          | BRM-51           | 54th St        | Barber Creek                               | 42.43726 | -86.06964 |
| Van Buren | Columbia     | BRM-52           | Baseline Rd    | Barber Creek                               | 42.41891 | -86.06147 |
| Van Buren | Columbia     | BRM-53           | CR 388         | Barber Creek                               | 42.40431 | -86.0518  |
| Van Buren | Columbia     | BRM-54           | Silver Lake Rd | Barber Creek                               | 42.39447 | -86.04827 |
| Van Buren | Columbia     | BRM-55           | 54th St        | Unnamed Tributary to Barber Creek          | 42.24274 | -86.04823 |
| Van Buren | Columbia     | BRM-56           | CR 388         | Unnamed Tributary to Barber Creek          | 42.24276 | -86.04824 |
| Allegan   | Lee          | BRM-59           | 56th St        | Middle Branch Black River                  | 42.26949 | -86.05405 |
| Allegan   | Lee          | BRM-60           | 102nd Ave      | Unnamed Drain to Lester Lake               | 42.26017 | -86.05165 |
| Allegan   | Lee          | BRM-61           | 102nd Ave      | Unnamed Drain to Mud Lake                  | 42.26011 | -86.05884 |
| Allegan   | Casco        | BRM-62           | 107th Ave      | Scott Creek Drain                          | 42.28188 | -86.08425 |
| Allegan   | Lee          | BRM-63           | 60th St        | Unnamed Tributary to Scott Creek           | 42.28154 | -86.07773 |
| Allegan   | Lee          | BRM-64           | 60th St        | Unnamed Tributary to Scott Creek           | 42.2836  | -86.07752 |
| Allegan   | Lee          | BRM-65           | 60th St        | Scott Creek Drain                          | 42.28809 | -86.07754 |
| Allegan   | Casco        | BRM-66           | 109th Ave      | Unnamed Tributary to Scott Creek           | 42.29055 | -86.08081 |
| Allegan   | Casco        | BRM-67           | 61st St        | Unnamed Tributary to Scott Creek           | 42.2921  | -86.08346 |
| Allegan   | Casco        | BRM-68           | 111th Ave      | Unnamed Tributary to Scott Creek           | 42.29925 | -86.08184 |

| Allegan   | Lee      | BRM-69           | 109th Ave     | Scott Creek Drain                          | 42.29049 | -86.06999 |
|-----------|----------|------------------|---------------|--------------------------------------------|----------|-----------|
| Allegan   | Lee      | BRM-70           | 58th St       | Scott Creek Drain                          | 42.29218 | -86.06593 |
| Allegan   | Lee      | BRM-71           | 109th Ave     | Scott Creek Drain                          | 42.29047 | -86.06335 |
| Allegan   | Lee      | BRM-72           | 56th St       | Scott Creek Drain                          | 42.28892 | -86.05427 |
| Allegan   | Lee      | BRM-72<br>BRM-73 | 109th Ave     | Scott Creek Drain                          | 42.29048 | -86.05035 |
| Allegan   | Lee      | BRM-74           | 55th St       | Scott Creek Drain                          | 42.29062 | -86.08084 |
| Allegan   | Lee      | BRM-75           | 109th Ave     | Scott Creek Drain                          | 42.29062 | -86.08084 |
| Allegan   | Casco    | BRN-01           | 103rd Ave     | North Branch Black River                   | 42.26237 | -86.13856 |
| Allegan   | Casco    | BRN-02           | 71st St       | Unnamed Tributary to North Branch Black Ri | 42.26997 | -86.14178 |
| Allegan   | Casco    | BRN-03           | Blue Star Hwy | Unnamed Tributary to North Branch Black Ri | 42.26808 | -86.15038 |
| Allegan   | Casco    | BRN-04           | 107th Ave     | North Branch Black River                   | 42.28171 | -86.12747 |
| Allegan   | Casco    | BRN-05           | 68th St       | Unnamed Tributary to North Branch Black Ri | 42.27972 | -86.12431 |
| Allegan   | Casco    | BRN-06           | 68th St       | North Branch Black River                   | 42.28602 | -86.12425 |
| Allegan   | Casco    | BRN-07           | 109th Ave     | North Branch Black River                   | 42.29049 | -86.12009 |
| Allegan   | Casco    | BRN-08           | 66th St       | Unnamed Tributary to North Branch Black Ri | 42.29087 | -86.11252 |
| Allegan   | Casco    | BRN-09           | 68th St       | Unnamed Tributary to North Branch Black Ri | 42.29641 | -86.12424 |
| Allegan   | Casco    | BRN-10           | 111th Ave     | Unnamed Tributary to North Branch Black Ri | 42.29904 | -86.12053 |
| Allegan   | Casco    | BRN-11           | 66th St       | North Branch Black River                   | 42.29675 | -86.11265 |
| Allegan   | Casco    | BRN-12           | 111th Ave     | North Branch Black River                   | 42.29901 | -86.10988 |
| Allegan   | Ganges   | BRN-13           | 66th St       | Black River Drain                          | 42.30405 | -86.11296 |
| Allegan   | Ganges   | BRN-14           | 113th ave     | Black River Drain                          | 42.30812 | -86.10841 |
| Allegan   | Ganges   | BRN-15           | 64th St       | Black River Drain                          | 42.31562 | -86.10139 |
| Allegan   | Ganges   | BRN-16           | 66th St       | Black River Drain                          | 42.31563 | -86.11315 |
| Allegan   | Ganges   | BRN-17           | 62nd St       | Black River Drain                          | 42.31656 | -86.08983 |
| Allegan   | Ganges   | BRN-19           | 118th Ave     | Black River Drain                          | 42.32963 | -86.10768 |
| Allegan   | Ganges   | BRN-20           | 66th St       | Black River Drain                          | 42.32505 | -86.11335 |
| Allegan   | Ganges   | BRN-21           | 116th Ave     | Black River Drain                          | 42.32104 | -86.09283 |
| Allegan   | Ganges   | BRN-22           | 119th Ave     | Black River Drain                          | 42.33404 | -86.33404 |
| Allegan   | Ganges   | BRN-23           | 120th Ave     | Black River Drain                          | 42.33724 | -86.1022  |
| Allegan   | Ganges   | BRN-24           | 120th St      | Black River Drain                          | 42.33833 | -86.10509 |
| Allegan   | Ganges   | BRN-26           | 62nd St       | Black River Drain                          | 42.33808 | -86.09061 |
| Allegan   | Cheshire | BRN-27           | 120th Ave     | Black River Drain                          | 42.38869 | -86.06822 |
| Allegan   | Ganges   | BRN-28           | 62nd St       | Black River Drain                          | 42.3201  | -86.08983 |
| Allegan   | Cheshire | BRN-29           | 118th Ave     | Black River Drain                          | 42.32995 | -86.07863 |
| Allegan   | Cheshire | BRN-30           | 120th Ave     | Black River Drain                          | 42.33869 | -86.06822 |
| Allegan   | Cheshire | BRN-31           | 57th St       | Black River Drain                          | 42.34301 | -86.05951 |
| Allegan   | Cheshire | BRN-32           | 54th St       | Black River Drain                          | 42.33433 | -86.04436 |
| Allegan   | Cheshire | BRN-33           | 60th St       | Black River Drain                          | 42.31908 | -86.27813 |
| Allegan   | Cheshire | BRN-34           | 56th St       | Black River Drain                          | 42.32128 | -86.05556 |
| Allegan   | Cheshire | BRN-35           | 116th Ave     | Black River Drain                          | 42.32124 | -86.04679 |
| Allegan   | Cheshire | BRN-36           | 112th Ave     | Black River Drain                          | 42.3064  | -86.03366 |
| Allegan   | Lee      | BRN-37           | 53rd St       | Black River Drain                          | 42.30348 | -86.03112 |
| Allegan   | Lee      | BRN-38           | 50th St       | Black River Drain                          | 42.30264 | -86.01944 |
| Van Buren | Geneva   | BRS-01           | 66th St       | Eastman Creek                              | 42.37138 | -86.1873  |
| Van Buren | Geneva   | BRS-02           | 65th St       | Eastman Creek                              | 42.22288 | -86.1125  |
| Van Buren | Geneva   | BRS-03           | 64th St       | Eastman Creek                              | 42.37482 | -86.16792 |
| Van Buren | Geneva   | BRS-04           | 62nd St       | Eastman Creek                              | 42.38749 | -86.14877 |
| Van Buren | Geneva   | BRS-05           | 8th Ave       | Eastman Creek                              | 42.38976 | -86.14681 |
| Van Buren | Geneva   | BRS-06           | 60th St       | Eastman Creek                              | 42.39671 | -86.12945 |
| Van Buren | Geneva   | BRS-07           | 62nd St       | Eastman Creek                              | 42.37989 | -86.14868 |

| Van Buren | Geneva       | BRS-08   | 60th St      | Eastman Creek                              | 42.38364  | -86.12943 |
|-----------|--------------|----------|--------------|--------------------------------------------|-----------|-----------|
| Van Buren | Geneva       | BRS-09   | 59th St      | Eastman Creek                              | 42.387    | -86.11977 |
| Van Buren | Geneva       | BRS-10   | 66th St      | Unnamed Tributary to South Branch Black Ri | 42.36622  | -86.18731 |
| Van Buren | Geneva       | BRS-11   | 65th St      | Unnamed Tributary to South Branch Black Ri | 42.3648   | -86.17767 |
| Van Buren | Geneva       | BRS-12   | 64th St      | Unnamed Tributary to south Branch Black Ri | 42.37522  | -86.1673  |
| Van Buren | Geneva       | BRS-13   | 16th Ave     |                                            |           |           |
| Van Buren | Geneva       | BRS-14   | 66th St      | Unnamed Tributary to South Branch Black Ri | 42.35985  | -86.18732 |
| Van Buren | Geneva       | BRS-15   | 65th St      | Unnamed Tributary to South Branch Black Ri | 42.35891  | -86.17769 |
| Van Buren | Geneva       | BRS-16   | 64th St      | Unnamed Tributary to South Branch Black Ri | 42.35895  | -86.17764 |
| Van Buren | Geneva       | BRS-17   | 65th St      | Unnamed Tributary to South Branch Black Ri | 42.35464  | -86.17765 |
| Van Buren | Geneva       | BRS-18   | 64th St      | Unnamed Tributary to South Branch Black Ri | 42.35461  | -86.1777  |
| Van Buren | Geneva       | BRS-19   | 66th St      | South Branch Black River                   | 42.35427  | -86.18761 |
| Van Buren | Geneva       | BRS-20   | CR 380       | South Branch Black River                   | 42.34618  | -86.18688 |
| Van Buren | Bangor       | BRS-21   | M-43         | Drain to Merriman Lake                     | 42.33118  | -86.15606 |
| Van Buren | Bangor       | BRS-22   | 63rd St      | Drain to Merriman Lake                     | 42.32461  | -86.15788 |
| Van Buren | Bangor       | BRS-23   | CR 378       | Drain to Merriman Lake                     | 42.3087   | -86.17194 |
| Van Buren | Bangor       | BRS-24   | 34th Ave     | Drain to School Section Lake               | 42.29417  | -86.1722  |
| Van Buren | Bangor       | BRS-25   | CR 687       | South Branc.033h Black River               | 42.3307   | -86.14828 |
| Van Buren | Geneva       | BRS-26   | 24th Ave     | Unnamed Tributary to South Branch Black Ri | 42.33221  | -86.13137 |
| Van Buren | Geneva       | BRS-27   | 20th Ave     | Unnamed Tributary to South Branch Black Ri | 42.34661  | -86.12781 |
| Van Buren | Geneva       | BRS-28   | 59.5th St    | Unnamed Tributary to South Branch Black Ri | 42.33236  | -86.12399 |
| Van Buren | Bangor       | BRS-29   | M-43         | Maple Creek                                | 42.18962  | -86.07381 |
| Van Buren | Bangor       | BRS-30   | 30th Ave     | Maple Creek                                | 42.18519  | -86.06941 |
| Van Buren | Bangor       | BRS-31   | 34th Ave     | Cedar Drain                                | 42.17673  | -86.07362 |
| Van Buren | Bangor       | BRS-32   | 36th Ave     | Cedar Drain                                | 42.17236  | -86.07119 |
| Van Buren | Bangor       | BRS-33   | CR 376       | Cedar Drain                                | 42.16381  | -86.07679 |
| Van Buren | Arlington    | BRS-34   | CR 681       | Unnamed Tributary to Cedar Drain           | 42.16653  | -86.06531 |
| Van Buren | Arlington    | BRS-35   | CR 681       | Maple Creek                                | 42.18026  | -86.06534 |
| Van Buren | Arlington    | BRS-36   | 56th St      | Nelson Extension Drain                     | 42.17313  | -86.0546  |
| Van Buren | Arlington    | BRS-37   | CR 215       | Nelson Extension Drain                     | 42.17204  | -86.04305 |
| Van Buren | Arlington    | BRS-38   | 56th St      | Unnamed Tributary to Nelson Extension Drai | 42.17941  | -86.05473 |
| Van Buren | Arlington    | BRS-39   | CR 681       | Unnamed Tributary to Maple Creek           | 42.1849   | -86.0654  |
| Van Buren | Arlington    | BRS-40   | 56th St      | Unnamed Tributary to Maple Creek           | 42.18321  | -86.05481 |
| Van Buren | Bangor       | BRS-40.5 | Hamilton Ave |                                            |           |           |
| Van Buren | Arlington    | BRS-41   | CR 681       | South Branch Black River                   | 42        | -86       |
| Van Buren | Arlington    | BRS-42   | 55.5th St    | Unnamed Tributary to South Branch Black Ri | 42.1992   | -86.05183 |
| Van Buren | Columbia     | BRS-43   | CR 215       | Unnamed Tributary to South Branch Black Ri | 42.19924  | -86.04364 |
| Van Buren | Columbia     | BRS-44   | CR 380       | Unnamed Tributary to South Branch Black Ri | 42.20799  | -86.05159 |
| Van Buren | Columbia     | BRS-45   | 55th St      | Unnamed Tributary to South Branch Black Ri | 42.21078  | -86.04911 |
| Van Buren | Columbia     | BRS-46   | 56th St      | Unnamed Tributary to South Branch Black Ri | 42.21342  | -86.05492 |
| Van Buren | Columbia     | BRS-47   | 16th Ave     | Unnamed Tributary to South Branch Black Ri | 42.36095  | -86.08433 |
| Van Buren | Columbia     | BRS-48   | 54th St      | South Branch Black River                   | 42.34531  | -86.07243 |
| Van Buren | Columbia     | BRS-49   | 52nd St      | South Branch Black River                   | 42.34348  | -86.05295 |
| Van Buren | Columbia     | BRS-50   | 20th Ave     | Great Bear Lake Drain                      | 42.20795  | -86.03121 |
| Van Buren | Columbia     | BRS-51   | 51st St      | Great Bear Lake Drain                      | 42.21225  | -86.02587 |
| Van Buren | Columbia     | BRS-53   | 49th St      | Great Bear Lake Drain                      | 42.21624  | -86.01428 |
| Van Buren | Columbia     | BRS-54   | 46.5 St      | Great Bear Lake Drain                      | 42.22152  | -86       |
| Van Buren | Bloomingdale | BRS-55   | 45th St      | Haven and Max Lake Drain                   | 42.22494  | -85.59226 |
| Van Buren | Bloomingdale | BRS-56   | 15th Ave     | Haven and Max Lake Drain                   | 42.21866  | -85.57927 |
| Van Buren | Bloomingdale | BRS-57   | 42nd St      | Haven and Max Lake Drain                   | 42.22567  | -85.57435 |
|           | Diooninguale | 510-57   |              |                                            | -+2.22007 | 00.07400  |

|           |              |        |          | -                           |          |           |
|-----------|--------------|--------|----------|-----------------------------|----------|-----------|
| Van Buren | Bloomingdale | BRS-58 | 41st St  | Haven and Max Lake Drain    | 42.22814 | -85.56865 |
| Van Buren | Bloomingdale | BRS-59 | CR 388   | Haven and Max Lake Drain    | 42.3608  | -85.9108  |
| Van Buren | Bloomingdale | BRS-60 | 8th Ave  | Haven and Max Lake Drain    | 42.23397 | -85.55681 |
| Van Buren | Bloomingdale | BRS-61 | 6th Ave  | Haven and Max Lake Drain    | 42.23843 | -85.55675 |
| Van Buren | Columbia     | BRS-62 | 50th St  | Black River Extension Drain | 42.33183 | -86.03305 |
| Van Buren | Arlington    | BRS-63 | 24th Ave | Black River Extension Drain | 42.33204 | -86.03532 |
| Van Buren | Arlington    | BRS-64 | 50th St  | Black River Extension Drain | 42.3319  | -86.03305 |
| Van Buren | Arlington    | BRS-65 | 28th Ave | Black River Extension Drain | 42.31578 | -86.01941 |
| Van Buren | Arlington    | BRS-66 | 52nd St  | Black River Extension Drain | 42.18847 | -86.03136 |
| Van Buren | Arlington    | BRS-67 | 30th Ave | Black River Extension Drain | 42.18539 | -86.03428 |
| Van Buren | Arlington    | BRS-68 | 48th St  | Black River Extension Drain | 42.19543 | -86.00809 |
| Van Buren | Arlington    | BRS-69 | 28th Ave | Black River Extension Drain | 42.18957 | -86.01187 |
| Van Buren | Arlington    | BRS-70 | M-43     | Black River Extension Drain | 42.18095 | -86.00852 |
| Van Buren | Arlington    | BRS-71 | CR 673   | Black River Extension Drain | 42.18103 | -86.01955 |
| Van Buren | South Haven  | BRS-72 | M-43     | Black River Extension Drain | 42.18108 | -85.59381 |
| Van Buren | Arlington    | BRS-73 | CR 673   | Black River Extension Drain | 42.17544 | -86.01955 |

### **Appendix N: Black River Watershed Hydrologic Study**





Dave Fongers Hydrologic Studies Unit Land and Water Management Division Michigan Department of Environmental Quality October 11, 2004

# Table of Contents

| Summary                                             |       |
|-----------------------------------------------------|-------|
| Project Goals                                       |       |
| Watershed Description and Model Parameters          |       |
| Model Results                                       |       |
| Appendix                                            | A-132 |
| Appendix A: Black River Hydrologic Model Parameters |       |

For comments or questions relating to this document, contact Dave Fongers at:

MDEQ, LWMD, P.O. Box 30458, Lansing, MI 48909 fongersd@michigan.gov 517-373-0210



The Black River hydrologic study was funded by a Part 319 grant from the United States Environmental Protection Agency to MDEQ's Nonpoint Source program. For more information, go to www.michigan.gov/deqnonpointsourcepollution.

## Summary

A hydrologic model of the Black River watershed was developed by the Hydrologic Studies Unit (HSU) of the Michigan Department of Environmental Quality (MDEQ) using the Hydrologic Engineering Center's Hydrologic Modeling System (HEC-HMS). The hydrologic model was developed to help determine the effect of land use changes on the Black River's flow regime and to provide design flows for streambank stabilization Best Management Practices (BMPs). Watershed stakeholders may combine this information with other determinants, such as open space preservation, to decide what locations are the most appropriate for wetland restoration, stormwater detention, in-stream BMPs, or upland BMPs. Local governments within the watershed could also use the information to help develop stormwater ordinances.

The hydrologic model has two scenarios corresponding to land uses in 1800 and 1978. General land use trends are illustrated in Figure 1. More detailed land use information is provided in Table 1 in the Watershed Description and Model Parameters section of this report.

Because of the land use changes, the model shows increases in runoff volumes and peak flows from 1800 to 1978 for the 50 percent chance (2-year) and 4 percent chance (25-year) 24-hour design storms, as shown in Figures 8 through 11. Additional flow details are in the Model Results section of this report. Increases in the runoff volume and peak flow from the 4 percent chance, 24-hour storms could cause or aggravate flooding problems unless mitigated through the use of effective stormwater management techniques. Increases in the 50 percent chance, 24-hour storm will increase channel-forming flows. The channel-forming flow in a stable stream usually has a one- to two-year recurrence interval. These relatively modest storm flows, because of their higher frequency, have more effect on channel form than extreme flood flows.

Hydrologic changes that increase this flow can cause the stream channel to become unstable. Stream instability is indicated by excessive erosion at many locations throughout a stream reach. Stormwater management techniques used to mitigate flooding can also help mitigate projected channel-forming flow increases. However, channel-forming flow criteria should be specifically considered in the stormwater management plan so that the selected BMPs will be most effective. For example, detention ponds designed to control runoff from the 4 percent chance, 24-hour storm may do little to control the runoff from the 50 percent chance, 24-hour storm, unless the outlet is specifically designed to do so.

One way to compare runoff from different subbasins is to calculate the yield, which is the peak flow divided by the drainage area. The area-weighted average yield from the 50 percent chance (2-year), 24-hour storm for the Black River watershed is 0.006 cubic feet per second per acre (cfs/acre) for 1978 land use scenario. This value may be used to guide stakeholders' fish habitat and stream stability management decisions. The area-weighted average yield from the 4

percent chance (25-year), 24-hour storm for the Black River watershed is 0.03 cfs/acre for 1978 land use scenario. This value may be used to guide stakeholders' flood control management decisions. Additional details are shown in Figures 12 and 13 and in the Model Results section of this report.

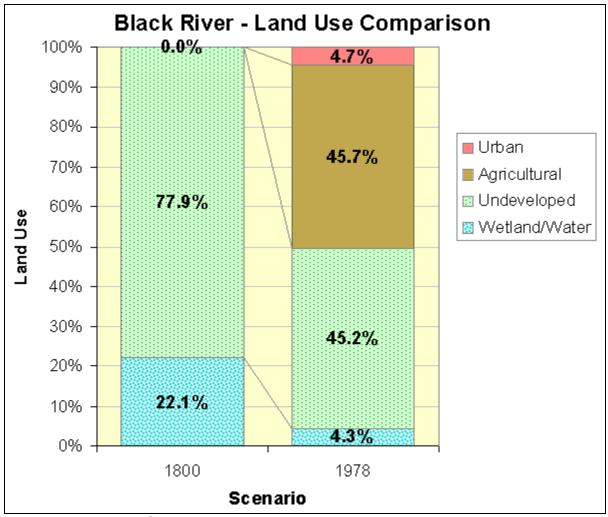



Figure 1: Land Use Comparison

# **Project Goals**

The Black River hydrologic study was initiated in support of the Black River Watershed Planning project, which is funded in part by a United States Environmental Protection Agency (USEPA) Part 319 grant administered by the MDEQ. The goals of this Black River study are:

- To better understand the watershed's hydrologic characteristics and the impact of hydrologic changes in the Black River watershed
- To facilitate the selection and design of suitable BMPs
- To provide information that can be used by local units of government to develop or improve stormwater ordinances
- To help determine the watershed management plan's critical areas the geographic portions of the watershed contributing the majority of the pollutants and having significant impacts on the waterbody

### Watershed Description and Model Parameters

The 286 square mile Black River watershed, Figure 2, outlets to Lake Michigan at South Haven and is located in Allegan and Van Buren counties. Black River's profile, Figure 3, is typical - steeper in the headwaters, flattening out toward the mouth.

This Black River study divides the watershed into 24 subbasins, as shown in Figure 4.

Our analysis of the watershed uses the curve number technique to calculate surface runoff volumes and peak flows. This technique, developed by the Natural Resources Conservation Service (NRCS) in 1954, represents the runoff characteristics from the combination of land use and soil data as a runoff curve number. The curve numbers for each subbasin, listed in Appendix A, were calculated from digital soil and land use data using Geographic Information Systems (GIS) technology.

Runoff curve numbers were calculated from the land use and soil data shown in Figures 5 through 7. Land use maps based on the MDEQ GIS data for 1800 and 1978 are shown in Figures 5 and 6, respectively. The 1800 land use information is provided at the request of the Black River project manager. The MDEQ Nonpoint Source program does not expect or recommend that the flow regime calculated from 1800 land use be used as criteria for BMP design or as a goal for watershed managers.

The NRCS soils data for the watershed is shown in Figure 7. Where the soil is given a dual classification, B/D for example, the soil type was selected based on land use. In these cases, the soil type is specified as D for natural land uses or the

alternate classification (A, B, or C) for developed land uses. The runoff curve numbers calculated from the soil and land use data are listed in Appendix A. The percent impervious field is left at 0.0, because it is already incorporated in the curve numbers. The initial loss field is left blank so that HEC-HMS uses the default equation based on the curve number.

The time of concentration for each subbasin, which is the time it takes for water to travel from the hydraulically most distant point in the watershed to the design point, was calculated from the United States Geological Survey (USGS) quadrangles. The storage coefficients, which represent storage in the subbasin, were iteratively adjusted to provide a peak flow reduction equal to the ponding adjustment factors described further in Appendix A.

The reach routing method is the lag method. Lag is the travel time of water within each section of the stream. The method translates the flood hydrograph through the reach without attenuation. It is not appropriate for reaches that have ponds, lakes, wetlands, or flow restrictions that provide storage and attenuation of floodwater. Lag values for each reach were calculated using USGS quadrangles and are listed in Appendix A.

The selected precipitation events were the 50 and 4 percent chance (2- and 25year), 24-hour storms. Design rainfall values for these events are tabulated in *Rainfall Frequency Atlas of the Midwest*, Bulletin 71, Midwestern Climate Center, 1992, pp. 126-129, and summarized for this site in Appendix A. These values have been multiplied by 0.914 to account for the size of the watershed.

These parameters were then incorporated into a HEC-HMS model to compute runoff volume and flow.

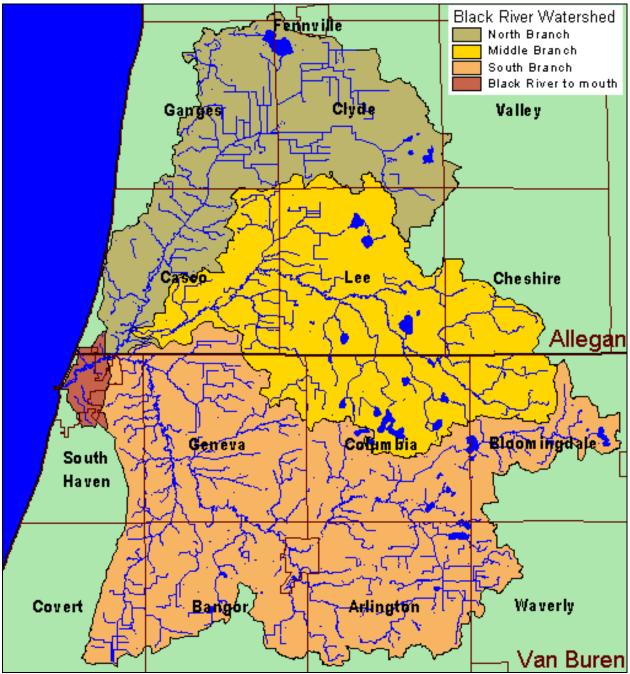



Figure 2: Delineated Black River Watershed

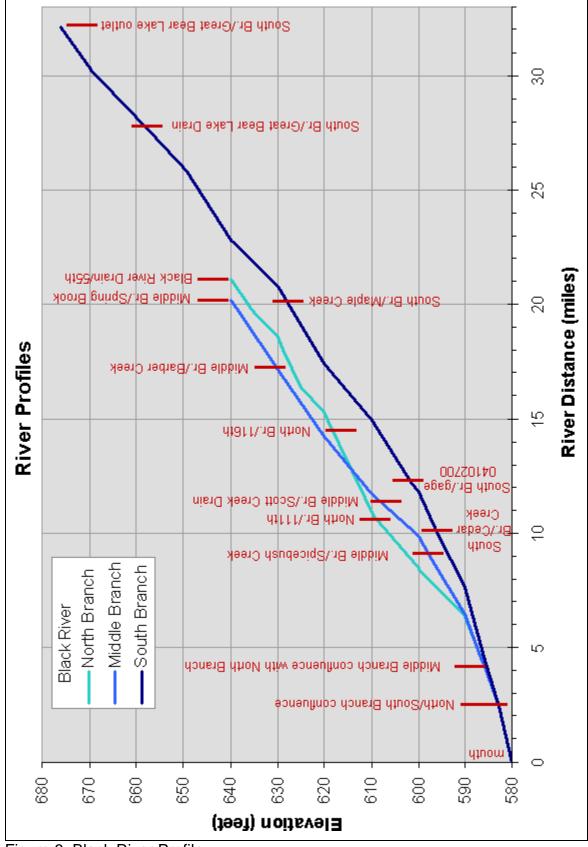



Figure 3: Black River Profile

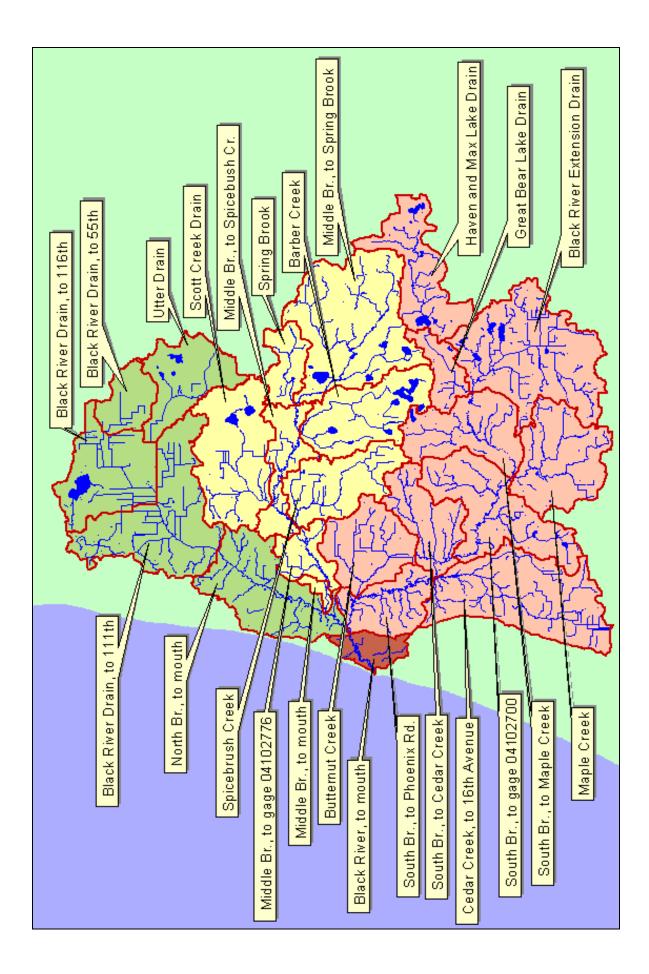



Figure 4: Subbasin Identification

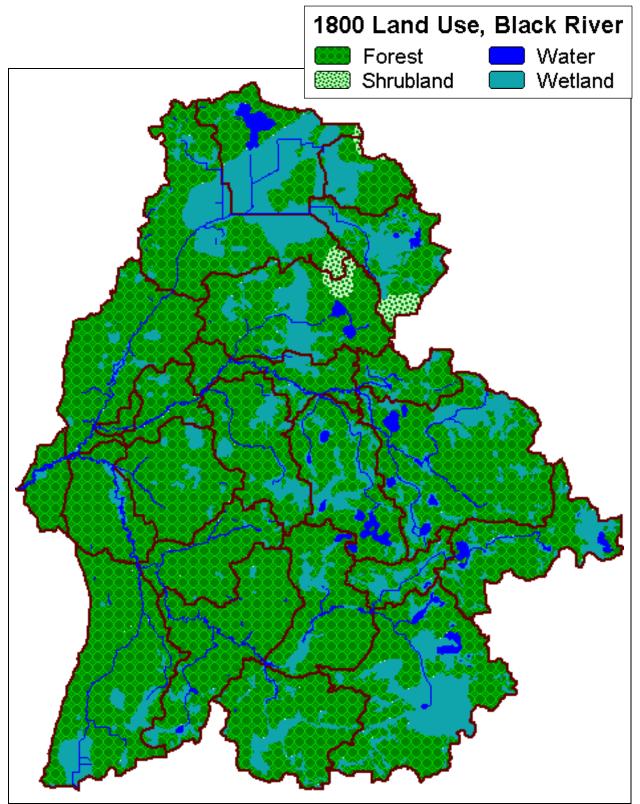



Figure 5: 1800 Land Use Data

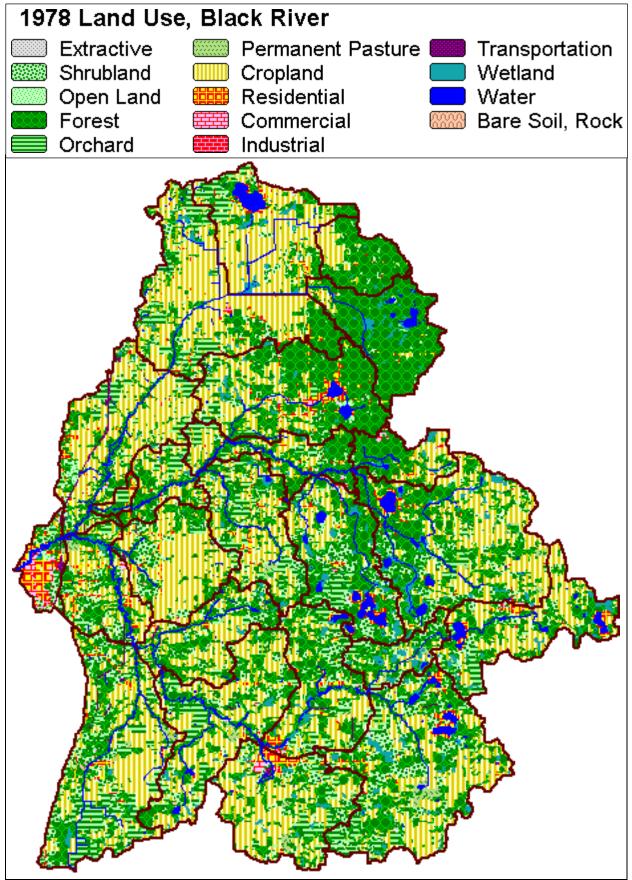



Figure 6: 1978 Land Use Data

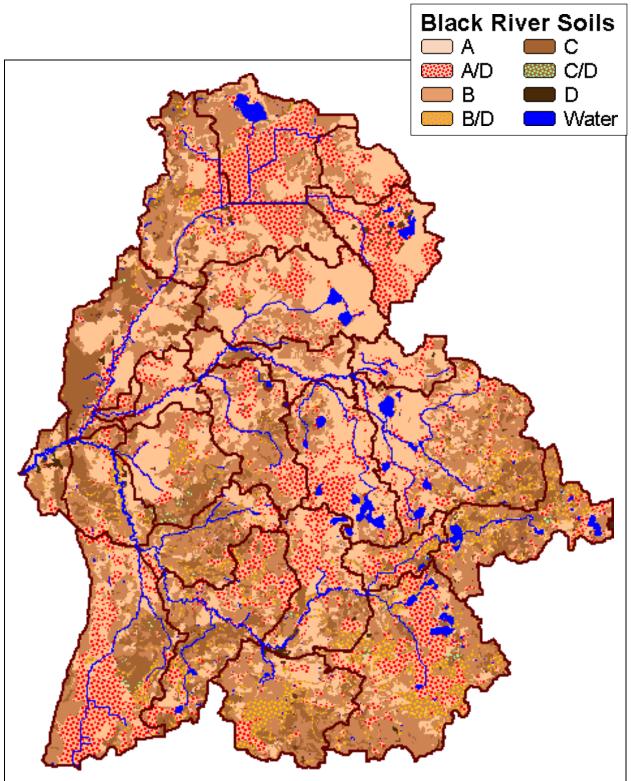



Figure 7: NRCS Soils Data

| Table 1: Land Use by Subbasins (Land uses less than 0.5 percent are not listed |
|--------------------------------------------------------------------------------|
| because all percentages are rounded to the nearest percent)                    |

| Description | Scenario | Residential | Commercial | Industrial | Utilities | Gravel Pit | Cemeteries,<br>Outdoor Rec. | Cropland | Orchard | Pasture | Herbaceous<br>Openland | Forest        | Water | %<br>Wetland |
|-------------|----------|-------------|------------|------------|-----------|------------|-----------------------------|----------|---------|---------|------------------------|---------------|-------|--------------|
| B1          | 1800     |             |            |            |           |            |                             |          |         |         |                        | 94%           | 3%    | 3%           |
|             | 1978     | 32%         | 10%        | 3%         | 7%        | 1%         | 5%                          | 4%       | 6%      | 1%      | 15%                    | 13%           | 3%    | 1%           |
| BM1         | 1800     |             |            |            |           |            |                             |          |         |         |                        | 100<br>%      |       |              |
|             | 1978     | 9%          |            |            |           |            |                             | 18%      | 26%     |         | 7%                     | 40%           |       | 00/          |
| BM2         | 1800     |             |            |            |           |            |                             |          | 1001    |         | •••                    | 92%           |       | 8%           |
|             | 1978     | 3%          |            |            |           |            |                             | 30%      | 13%     |         | 6%                     | 46%           |       | 1%           |
| BM2SC       | 1800     |             |            |            |           |            |                             |          |         |         |                        | 80%           |       | 20%          |
|             | 1978     | 3%          |            |            |           |            |                             | 38%      | 18%     | 1%      | 8%                     | 30%           |       | 2%           |
| BM3         | 1800     |             |            |            |           |            |                             |          |         |         |                        | 85%           |       | 15%          |
| 5           | 1978     | 3%          | 1%         |            |           |            |                             | 26%      | 11%     |         | 5%                     | 51%           |       | 1%           |
| BM3aSCD     | 1800     |             |            |            |           |            |                             |          |         |         | 5%                     | 71%           | 2%    | 23%          |
| BINGGOOD    | 1978     | 6%          |            |            |           |            | 1%                          | 23%      | 6%      |         | 4%                     | 55%           | 2%    | 3%           |
| BM3bBC      | 1800     |             |            |            |           |            |                             |          |         |         |                        | 71%           | 6%    | 22%          |
| DIVIODEO    | 1978     | 4%          |            |            |           | 1%         |                             | 16%      | 9%      |         | 13%                    | 44%           | 5%    | 6%           |
| BM4         | 1800     |             |            |            |           |            |                             |          |         |         |                        | 75%           |       | 22%          |
| DIVIT       | 1978     | 2%          |            |            |           |            |                             | 36%      | 3%      | 1%      | 10%                    | 41%           | 3%    | 5%           |
| BM4SB       | 1800     |             |            |            |           |            |                             |          |         |         |                        | 83%           | 1%    | 17%          |
| DIVI43D     | 1978     | 2%          | 2%         |            |           |            |                             | 27%      | 1%      |         | 3%                     | 60%           |       | 4%           |
| BN1         | 1800     |             |            |            |           |            |                             |          |         |         |                        | 94%           |       | 6%           |
| DINI        | 1978     | 3%          |            |            | 3%        |            | 1%                          | 51%      | 12%     |         | 4%                     | 23%           |       | 1%           |
| BN2         | 1800     |             |            |            |           |            |                             |          |         |         | 3%                     | 66%           |       | 31%          |
| DINZ        | 1978     | 2%          |            |            |           |            |                             | 54%      | 11%     |         | 4%                     | 25%           |       | 2%           |
|             | 1800     |             |            |            |           |            |                             |          |         |         | 1%                     | 43%           | 6%    | 50%          |
| BN3         | 1978     | 3%          |            |            |           |            |                             | 55%      | 9%      |         | 6%                     | 17%           | 4%    | 5%           |
|             | 1800     |             |            |            |           |            |                             |          |         |         | 10%                    | 52%           | 2%    | 37%          |
| BN4         | 1978     | 1%          |            |            |           |            |                             | 5%       |         |         | 1%                     | 85%           | 2%    | 5%           |
|             | 1800     |             |            |            |           |            |                             |          |         |         | 3%                     | 60%           |       | 36%          |
| BN4UD       | 1978     | 1%          |            |            |           |            |                             | 20%      |         |         |                        | 73%           |       | 1%           |
| 504         | 1800     |             |            |            |           |            |                             |          |         |         |                        | 91%           |       | 8%           |
| BS1         | 1978     | 7%          | 1%         |            | 1%        |            |                             | 33%      | 6%      | 2%      | 12%                    |               |       | 1%           |
|             | 1800     |             |            |            |           |            |                             |          |         |         |                        | 91%           |       | 9%           |
| BS1aBC      | 1978     | 3%          |            |            |           |            |                             | 58%      | 4%      |         | 11%                    | 22%           |       |              |
|             | 1800     |             |            |            |           |            |                             |          | .,.     |         |                        | 96%           |       | 3%           |
| BS2         | 1978     | 1%          |            |            |           |            |                             | 40%      | 4%      |         | 10%                    |               |       | 2%           |
|             | 1800     | 1 / 0       |            |            | 1         |            |                             | ,        | 170     |         |                        | 87%           |       | 13%          |
| BS2CC       | 1978     | 2%          |            |            | 1%        |            |                             | 37%      | 18%     | 1%      | 12%                    |               |       | 1%           |
|             | 1800     | - /0        |            |            | 170       |            |                             | 0170     | 1070    | 1 70    | /0                     | 92%           |       | 7%           |
| BS3         | 1978     | 1%          |            |            |           |            |                             | 42%      | 12%     | 1%      | 7%                     |               |       | 2%           |
|             | 1800     | 1 70        |            |            |           |            |                             | ר∠ר /0   | 12/0    | 1 /0    | 1 /0                   | 84%           |       | 15%          |
| BS3MC       | 1978     | 4%          | 1%         |            | 1%        |            |                             | 45%      | 10%     | 1%      | 10%                    |               |       | 3%           |
|             | 1910     | + /0        | 1 /0       |            | I /0      |            |                             | 4J /0    | 10/0    | 1 /0    | 10/0                   | <b>۲</b> + /0 |       | J /0         |

| Description | Scenario | Residential | Commercial | Industrial | Utilities | Gravel Pit | Cemeteries,<br>Outdoor Rec. | Cropland | Orchard | Pasture | Herbaceous<br>Openland | Forest | Water | Wetland |
|-------------|----------|-------------|------------|------------|-----------|------------|-----------------------------|----------|---------|---------|------------------------|--------|-------|---------|
| BS4         | 1800     |             |            |            |           |            |                             |          |         |         |                        | 85%    | 1%    | 14%     |
| D34         | 1978     | 4%          |            |            |           |            |                             | 29%      | 11%     |         | 11%                    | 39%    | 1%    | 3%      |
| BS5ed       | 1800     |             |            |            |           |            |                             |          |         |         |                        | 64%    | 3%    | 34%     |
| DSSeu       | 1978     | 3%          |            |            |           |            |                             | 34%      | 8%      | 2%      | 15%                    | 32%    | 2%    | 3%      |
| BS5GBLD     | 1800     |             |            |            |           |            |                             |          |         |         |                        | 69%    | 1%    | 31%     |
| DODGDLD     | 1978     |             |            |            |           |            |                             | 19%      | 7%      | 3%      | 18%                    | 42%    | 1%    | 10%     |
| BS6GBL      | 1800     |             |            |            |           |            |                             |          |         |         |                        | 74%    | 4%    | 22%     |
| DOUGDL      | 1978     | 4%          |            | 1%         |           |            |                             | 37%      | 8%      |         | 8%                     | 32%    | 4%    | 4%      |

## Model Results

Model results are illustrated in Figures 8 through 17 and detailed in Tables 2 and 3. Table 2 and Figures 8 and 10 show the computed peak flows and runoff volumes from each subbasin. These values represent the peak flow contribution from the subbasins, not the flow in the river. Table 3 and Figures 9 and 11 show the computed peak flows and runoff volumes at locations in the river.

The increases in stormwater runoff volume and peak flows conditions from 1800 to 1978 are due to changes in land use and loss of storage. The hydrologic model shows significant increases in runoff volumes and peak flows for both design storms. Peak flows and runoff volumes from the 50 percent chance 24-hour storm are predicted to increase more, on a percentage basis, than flows from the 4 percent chance, 24-hour storm. Increases in runoff volumes and peak flows, which will increase streambank erosion. Channel-forming flow is the flow that is most effective at shaping the channel. In a stable stream, the channel-forming flow has a one- to two-year recurrence interval and is the bankfull flow. Increases in runoff volumes and peak flows from the 4 percent chance storm the 4 percent chance storm will aggravate flooding. These projected increases can be moderated through the use of effective stormwater management techniques.

A model stormwater ordinance adopted by nearby Kent County, which is also being considered for adoption by other local units of government, calls for a maximum release rate of 0.05 cfs/acre for runoff from the 50 percent chance, 24hour storm for Zone A areas, the most environmentally sensitive of the three management zones. Currently, the area-weighted average yield from this storm for the Black River Watershed is 0.006 cfs/acre, with no subbasin greater than 0.012 cfs/acre, as shown in Figure 12. The ordinance also calls for a maximum release rate of 0.13 cfs/acre for runoff from the 4 percent chance, 24-hour storm for Zones A and B. Currently, the average yield from this storm is 0.03 cfs/acre, with no subbasin greater than 0.08 cfs/acre, as shown in Figure 13. Additional details are listed in Table 2. If the Black River watershed stakeholders use the Kent County model ordinance as a basis for a Black River stormwater ordinance, they should consider whether the Kent County model ordinance standards will adequately protect the Black River and its tributaries.

Significant portions of the Black River and its tributaries are designated trout streams, as shown in Figure 14. In our Pigeon River watershed study, we compared the flows from the 50 percent chance, 24-hour storm to flows based on a target yield of 0.0075 cfs/acre. This target yield was selected as criteria for a good trout fishery based on Mike Wiley and Paul Seelbach's November 1998 report titled "*An ecological assessment of opportunities for fisheries rehabilitation in the Pigeon River, Ottawa County.*" Although clearly not the sole factor determining fish habitat quality, the good quality trout habitat there corresponds to the locations with yields less than the target yield. Impaired habitat corresponds to locations with yields less than about 1.4 times the target yield. Locations with higher yields generally did not have trout. These same thresholds were applied to the Black River results. For the 1800 scenario, all 17 river locations would be good. For the 1978 scenario, Black River would be impaired above the Great Bear Lake Drain and poor above the Great Bear Lake. Complete results are shown in Figure 15 and listed in Table 9.

The Black River has three main tributaries – the North, Middle, and South Branches. In the Macatawa River watershed, a hydrologic study revealed that the three main tributaries peaked at about the same time (page 8, *A Hydrologic Study of the Macatawa River Watershed*, MDEQ's Hydrologic Studies Unit). A project to alter the timing of one of the three tributaries, and reduce downstream flooding, is in progress. In the Black River, the three tributaries do not peak at the same time, as shown in Figures 16 and 17. Projects that reduce this timing differential have the potential to disproportionately increase peak flows in the main stem of the Black River.

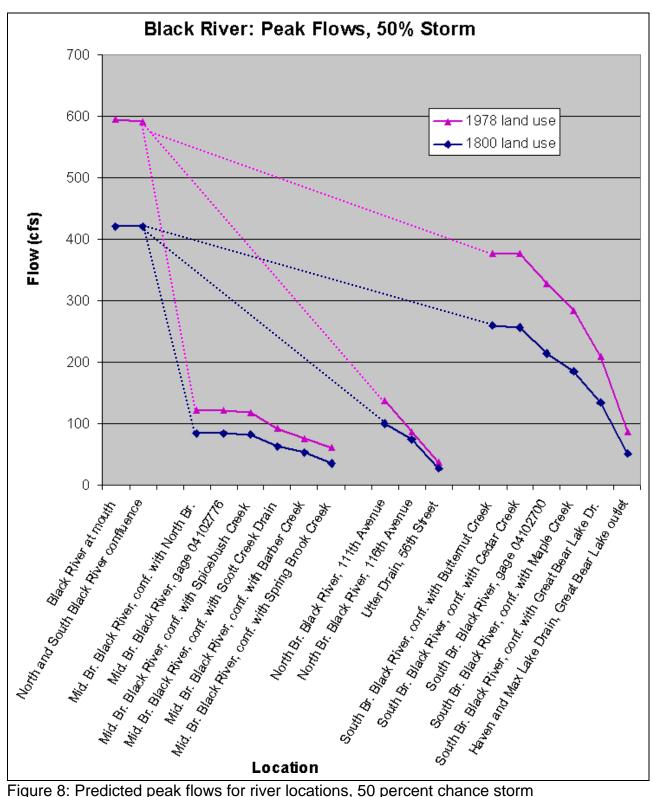



Figure 8: Predicted peak flows for river locations, 50 percent chance storm

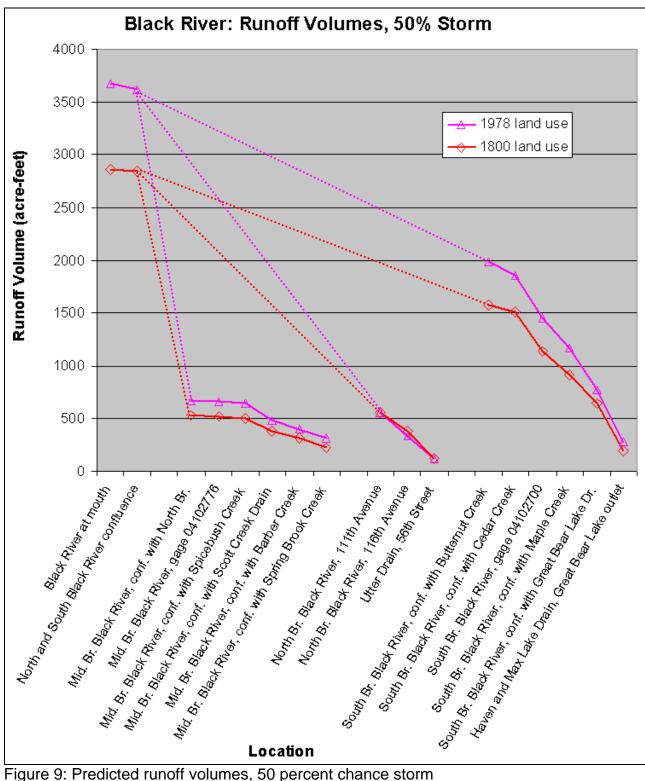



Figure 9: Predicted runoff volumes, 50 percent chance storm

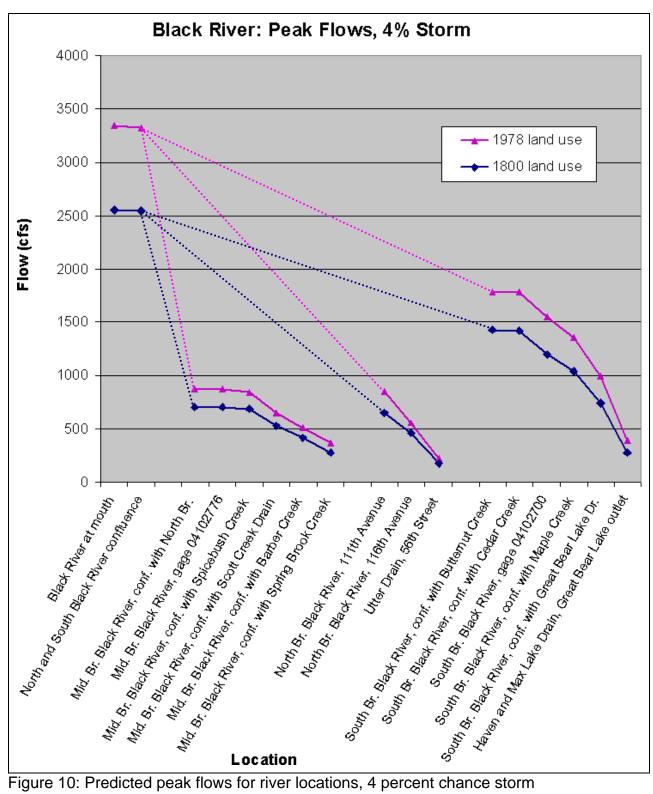



Figure 10: Predicted peak flows for river locations, 4 percent chance storm

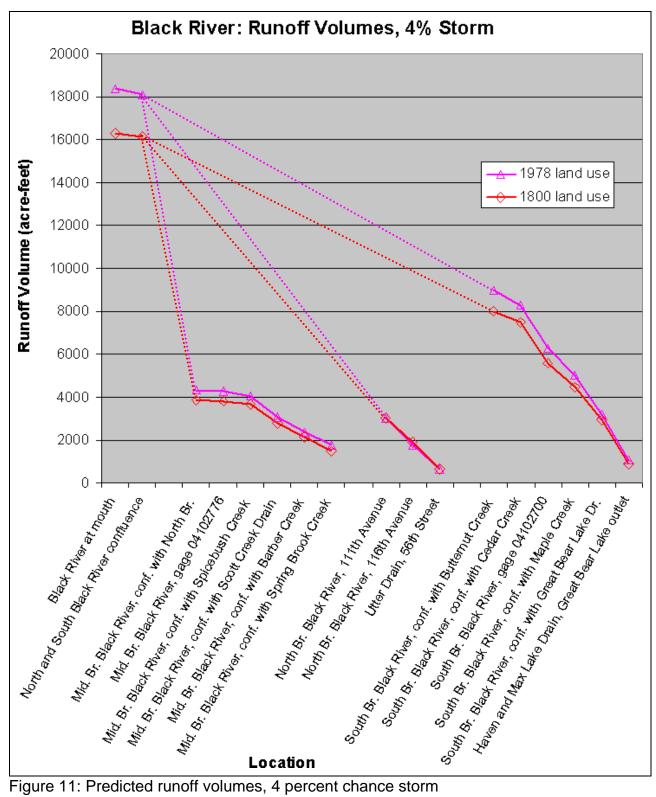



Figure 11: Predicted runoff volumes, 4 percent chance storm

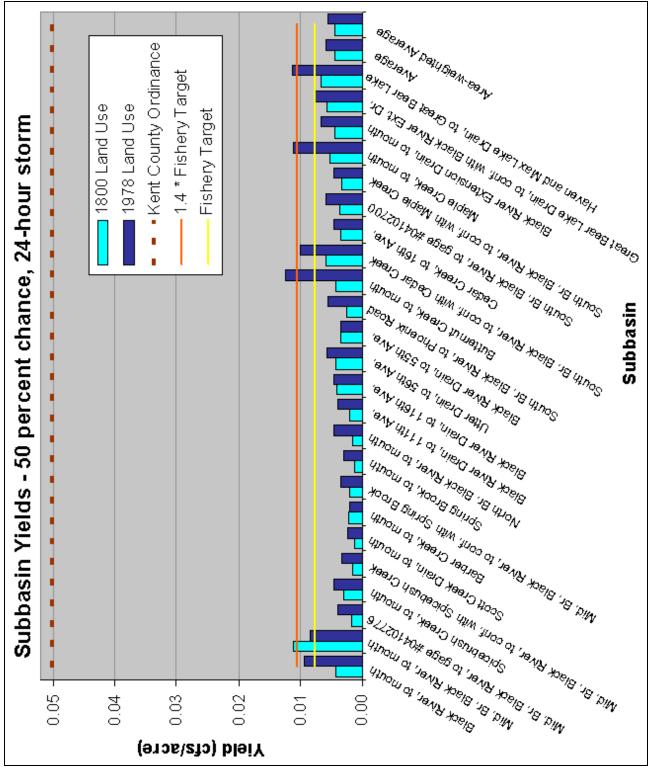



Figure 12: Subbasin Yields, 50 percent chance, 24-hour storm

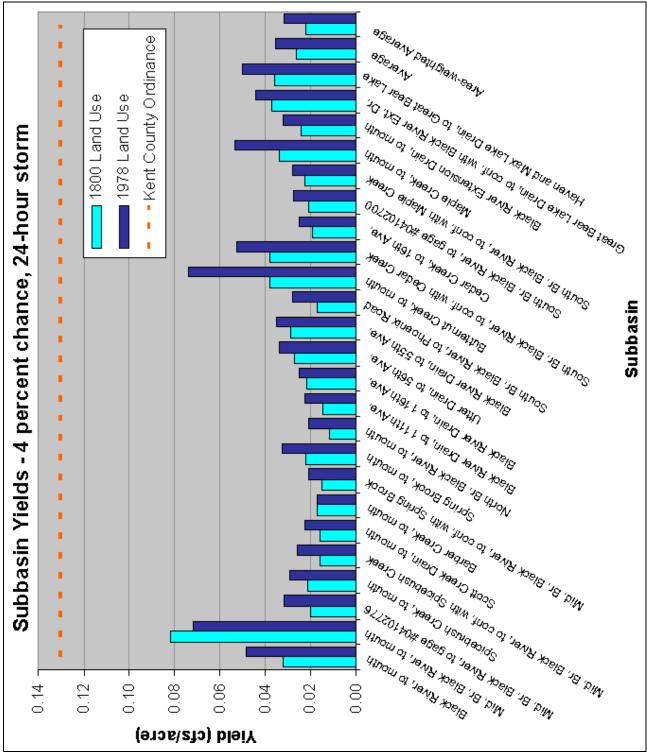



Figure 13: Subbasin Yields, 4 percent chance, 24-hour storm

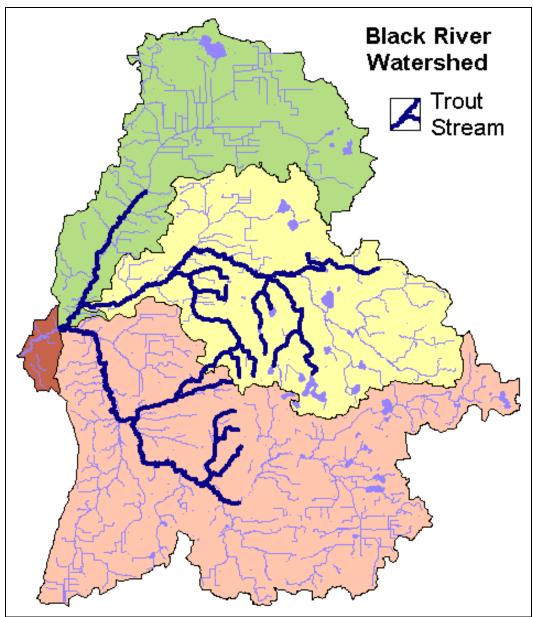



Figure 14: Black River Watershed Trout Streams

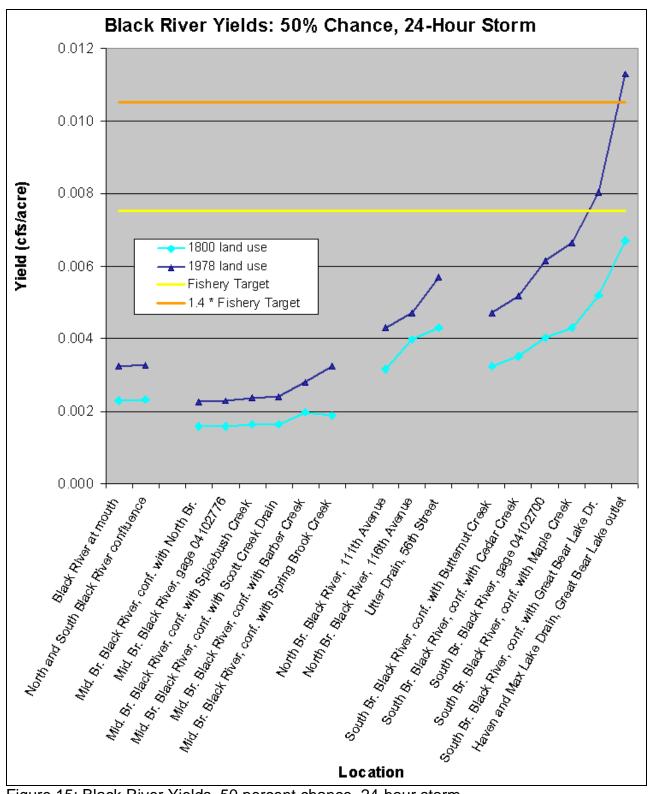



Figure 15: Black River Yields, 50 percent chance, 24-hour storm

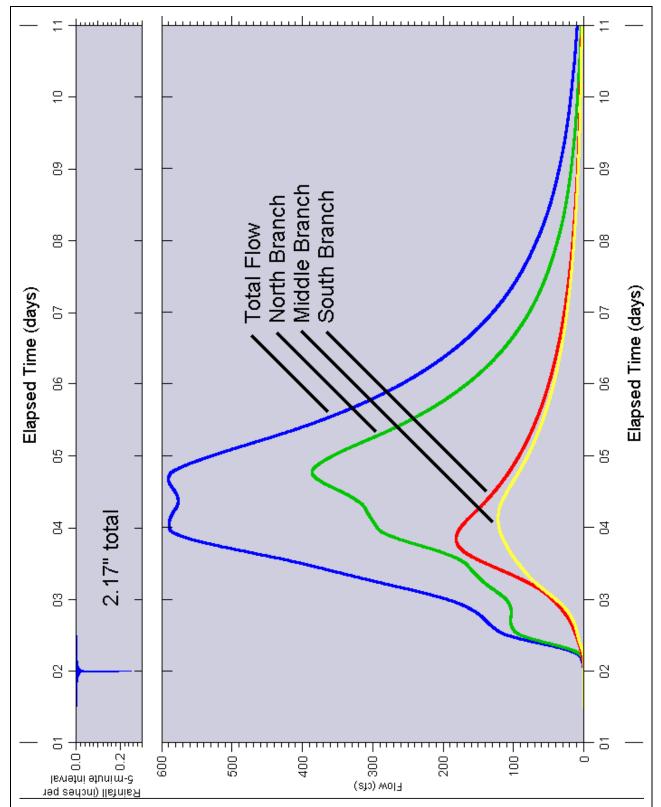



Figure 16: 50 percent chance, 24-hour storm hydrograph for Black River

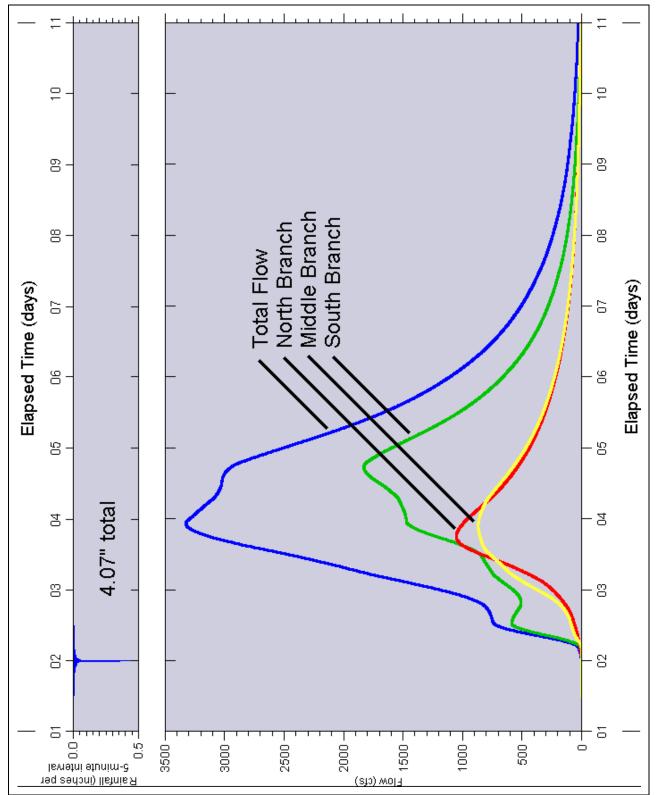



Figure 17: 4 percent chance, 24-hour storm hydrograph for Black River

|         | Subbasin                                            |                   | Land         | Peak<br>(ct |            |       | eld<br>acre) | Runoff<br>(acre |            |
|---------|-----------------------------------------------------|-------------------|--------------|-------------|------------|-------|--------------|-----------------|------------|
| ID      | Description                                         | Area<br>(sq. mi.) | Use          | 50%         | 4%         | 50%   | 4%           | 50%             | 4%         |
| B1      | Plack River, to mouth                               | 3.6               | 1800         | 10          | 75         | 0.004 | 0.03         | 28              | 186        |
| DI      | Black River, to mouth                               | 3.0               | 1978         | 22          | 113        | 0.009 | 0.05         | 60              | 267        |
| BM1     | Mid. Br. Black River, to mouth                      | 0.9               | 1800         | 7           | 49         | 0.011 | 0.08         | 8               | 50         |
| DIVIT   | Wild. Dr. Diack River, to mouth                     | 0.9               | 1978         | 5           | 43         | 0.008 | 0.07         | 6               | 45         |
| BM2     | Mid. Br. Black River, to gage                       | 4.6               | 1800         | 5           | 59         | 0.002 | 0.02         | 16              | 169        |
| DIVIZ   | #04102776                                           | 4.0               | 1978         | 11          | 92         | 0.004 | 0.03         | 27              | 206        |
| BM2SC   | Spicebush Creek, to mouth                           | 11.2              | 1800         | 21          | 151        | 0.003 | 0.02         | 98              | 606        |
|         |                                                     |                   | 1978         | 33          | 209        | 0.005 | 0.03         | 110             | 640        |
| BM3     | Mid. Br. Black River, to conf.                      | 7.1               | 1800         | 7           | 72         | 0.001 | 0.02         | 30              | 284        |
|         | with Spicebush Creek                                |                   | 1978         | 16          | 119        | 0.003 | 0.03         | 48              | 343        |
| BM3aSCD | Scott Creek Drain, to mouth                         | 17.1              | 1800         | 14          | 174        | 0.001 | 0.02         | 60              | 637        |
|         |                                                     |                   | 1978         | 26          | 247        | 0.002 | 0.02         | 85              | 728        |
| BM3bBC  | Barber Creek, to mouth                              | 13.3              | 1800         | 19          | 148        | 0.002 | 0.02         | 101             | 677        |
|         | ,                                                   |                   | 1978         | 17          | 147        | 0.002 | 0.02         | 77              | 601        |
| BM4     | Mid. Br. Black River, to conf.                      | 24.7              | 1800         | 33          | 239        | 0.002 | 0.02         | 210             | 1318       |
|         | with Spring Brook                                   |                   | 1978         | 56          | 326        | 0.004 | 0.02         | 300             | 1563       |
| BM4SB   | Spring Brook, to mouth                              | 4.9               | 1800         | 4           | 70         | 0.001 | 0.02         | 11              | 158        |
|         |                                                     |                   | 1978         | 10          | 103        | 0.003 | 0.03         | 21              | 195        |
| BN1     | North Br. Black River, to mouth                     | 16.0              | 1800         | 16          | 116        | 0.002 | 0.01         | 116             | 786        |
|         |                                                     |                   | 1978         | 47          | 214        | 0.005 | 0.02         | 283             | 1217       |
| BN2     | Black River Drain, to 111th Ave.                    | 20.6              | 1800         | 26          | 192        | 0.002 | 0.01         | 173             | 1094       |
|         |                                                     |                   | 1978         | 51          | 299        | 0.004 | 0.02         | 226             | 1236       |
| BN3     | Black River Drain, to 116th Ave.                    | 13.7              | 1800         | 35          | 189        | 0.004 | 0.02         | 218             | 995        |
|         |                                                     |                   | 1978         | 40          | 220        | 0.005 | 0.03         | 185             | 910        |
| BN4     | Utter Drain, to 56th Ave.                           | 10.3              | 1800         | 28          | 178        | 0.004 | 0.03         | 126             | 650        |
|         |                                                     |                   | 1978         | 37          | 222        | 0.006 | 0.03         | 126             | 650        |
| BN4UD   | Black River Drain, to 55th Ave.                     | 5.4               | 1800         | 12          | 99         | 0.003 | 0.03         | 41              | 274        |
|         |                                                     |                   | 1978         | 12          | 121        | 0.004 | 0.04         | 23              | 214        |
| BS1     | South Br. Black River, to<br>Phoenix Road           | 8.3               | 1800         | 14          | 92         | 0.003 | 0.02         | 80              | 469        |
|         |                                                     |                   | 1978         | 29          | 146        | 0.006 | 0.03         | 124             | 579        |
| BS1aBC  | Butternut Creek, to mouth                           | 10.9              | 1800         | 30          | 263        | 0.004 | 0.04         | 73              | 523        |
|         |                                                     |                   | 1978<br>1800 | 86<br>34    | 514<br>221 | 0.012 | 0.07         | 133<br>89       | 689<br>516 |
| BS2     | South Br. Black River, to conf.<br>with Cedar Creek | 9.1               | 1978         |             | 304        | 0.006 | 0.04         |                 | 633        |
|         |                                                     |                   | 1978         | 58<br>48    | 264        | 0.010 | 0.05         | 135<br>287      | 1426       |
| BS2CC   | Cedar Creek, to 16th Ave.                           | 21.6              | 1978         | 40<br>64    | 204<br>347 | 0.003 | 0.02         | 267             | 1367       |
|         | South Dr. Disol Diver to rem                        |                   | 1978         | 39          | 216        | 0.005 | 0.03         | 204             | 1090       |
| BS3     | South Br. Black River, to gage #04102700            | 16.4              | 1978         | 62          | 286        | 0.004 | 0.02         | 220             | 1263       |
|         |                                                     |                   | 1800         | 26          | 174        | 0.000 | 0.03         | 118             | 685        |
| BS4     | South Br. Black River, to conf.<br>with Maple Creek | 12.0              | 1978         | 35          | 215        | 0.005 | 0.02         | 132             | 723        |
|         |                                                     |                   | 1970         | 30          | 210        | 0.000 | 0.03         | 132             | 123        |

## Table 2: Peak flows and runoff volumes per subbasin

|         | Subbasin                        |                   |      | Peak Flow<br>(cfs) |     |       | eld<br>acre) | Runoff Volume<br>(acre-feet) |      |
|---------|---------------------------------|-------------------|------|--------------------|-----|-------|--------------|------------------------------|------|
| ID      | Description                     | Area<br>(sq. mi.) | Use  | 50%                | 4%  | 50%   | 4%           | 50%                          | 4%   |
| BS4MC   | Maple Creek, to mouth           | 14.1              | 1800 | 47                 | 303 | 0.005 | 0.03         | 156                          | 851  |
| BOHINC  | Maple Cleek, to mouth           | 14.1              | 1978 | 100                | 481 | 0.011 | 0.05         | 254                          | 1088 |
| BS5ED   | Black River Extension Drain, to | 24.2              | 1800 | 70                 | 373 | 0.005 | 0.02         | 391                          | 1770 |
| BSSED   | mouth                           |                   | 1978 | 103                | 500 | 0.007 | 0.03         | 434                          | 1858 |
| BS5GBLD | Great Bear Lake Drain, to conf. | 4.4               | 1800 | 16                 | 104 | 0.006 | 0.04         | 54                           | 281  |
| BSSGBLD | with Black River Ext. Dr.       | 4.4               | 1978 | 21                 | 126 | 0.008 | 0.04         | 60                           | 295  |
| BS6GBL  | Haven and Max Lake Drain, to    | 12.2              | 1800 | 52                 | 280 | 0.007 | 0.04         | 200                          | 894  |
| BSOGBL  | Great Bear Lake                 | 12.2              | 1978 | 88                 | 390 | 0.011 | 0.05         | 281                          | 1071 |
|         | Average                         |                   | 1800 |                    |     | 0.004 | 0.026        |                              |      |
|         | Average                         |                   | 1978 |                    |     | 0.006 | 0.036        |                              |      |
|         |                                 |                   | 1800 |                    |     | 0.004 | 0.022        |                              |      |
|         | Area-weighted Average           |                   | 1978 |                    |     | 0.006 | 0.032        |                              |      |

| Table 3: Peak flows and | I runoff volumes | in Black River |
|-------------------------|------------------|----------------|
|-------------------------|------------------|----------------|

|                         | River Location                         |                      | La<br>nd    | F           | Peak<br>Flow<br>cfs) |           | ′ield<br>s/acre) | Vo        | unoff<br>olume<br>re-feet) |
|-------------------------|----------------------------------------|----------------------|-------------|-------------|----------------------|-----------|------------------|-----------|----------------------------|
| ID                      | Description                            | Area<br>(sq.<br>mi.) | Us<br>e     | 5<br>0<br>% | 4<br>%               | 50<br>%   | 4%               | 50<br>%   | 4%                         |
| J1 Black River at mouth | 286                                    | 18<br>00             | 4<br>2<br>1 | 25<br>55    | 0.0<br>02            | 0.0<br>14 | 28<br>64         | 1628<br>1 |                            |
|                         |                                        |                      | 19<br>78    | 5<br>9<br>4 | 33<br>40             | 0.0<br>03 | 0.0<br>18        | 36<br>76  | 1835<br>8                  |
| J2                      | North and South Black                  | 283                  | 18<br>00    | 4<br>2<br>0 | 25<br>44             | 0.0<br>02 | 0.0<br>14        | 28<br>47  | 1612<br>6                  |
| 52                      | River confluence                       | 200                  | 19<br>78    | 5<br>9<br>1 | 33<br>25             | 0.0<br>03 | 0.0<br>18        | 36<br>20  | 1810<br>2                  |
| JM                      | Mid. Br. Black River, conf.            |                      | 18<br>00    | 8<br>4      | 70<br>5              | 0.0<br>02 | 0.0<br>13        | 52<br>8   | 3883                       |
| 1                       | with North Br.                         | 84                   | 19<br>78    | 1<br>2<br>2 | 86<br>9              | 0.0<br>02 | 0.0<br>16        | 67<br>1   | 4313                       |
| JM                      | Mid. Br. Black River, gage             |                      | 18<br>00    | 8<br>4      | 70<br>5              | 0.0<br>02 | 0.0<br>13        | 52<br>1   | 3834                       |
| 2                       | 04102776                               | 83                   | 19<br>78    | 1<br>2<br>2 | 86<br>9              | 0.0<br>02 | 0.0<br>16        | 66<br>5   | 4268                       |
| JM                      | Mid. Br. Black River, conf.            |                      | 18<br>00    | 8<br>2      | 68<br>4              | 0.0<br>02 | 0.0<br>14        | 50<br>7   | 3671                       |
| 3                       | with Spicebush Creek                   | 78                   | 19<br>78    | 1<br>1<br>9 | 84<br>6              | 0.0<br>02 | 0.0<br>17        | 64<br>0   | 4066                       |
| JM                      | Mid. Br. Black River, conf.            | 60                   | 18<br>00    | 6<br>3      | 52<br>9              | 0.0<br>02 | 0.0<br>14        | 37<br>9   | 2783                       |
| 3a                      | with Scott Creek Drain                 | 00                   | 19<br>78    | 9<br>2      | 64<br>7              | 0.0<br>02 | 0.0<br>17        | 48<br>2   | 3083                       |
| JM                      | Mid. Br. Black River, conf.            | 43                   | 18<br>00    | 5<br>3      | 41<br>7              | 0.0<br>02 | 0.0<br>15        | 32<br>1   | 2151                       |
| 3b                      | with Barber Creek                      | F1                   | 19<br>78    | 7<br>7      | 51<br>1              | 0.0<br>03 | 0.0<br>19        | 39<br>8   | 2358                       |
| JM                      | Mid. Br. Black River, conf.            | 30                   | 18<br>00    | 3<br>6      | 27<br>9              | 0.0<br>02 | 0.0<br>15        | 22<br>1   | 1476                       |
| 4                       | with Spring Brook Creek                |                      | 19<br>78    | 6<br>1      | 37<br>5              | 0.0<br>03 | 0.0<br>20        | 32<br>1   | 1758                       |
| JN                      | North Br. Black River,                 | 50                   | 18<br>00    | 1<br>0<br>0 | 65<br>4              | 0.0<br>03 | 0.0<br>20        | 55<br>7   | 3011                       |
| 2 111th Avenue          | 50                                     | 19<br>78             | 1<br>3<br>8 | 85<br>3     | 0.0<br>04            | 0.0<br>27 | 56<br>0          | 3011      |                            |
| JN<br>3                 | North Br. Black River,<br>116th Avenue | 29                   | 18<br>00    | 7<br>4      | 46<br>4              | 0.0<br>04 | 0.0<br>25        | 38<br>5   | 1919                       |
| 5                       |                                        |                      | 19          | 8           | 56                   | 0.0       | 0.0              | 33        | 1775                       |

|    |                                              |     | 78       | 8           | 1        | 05        | 30        | 3        |      |
|----|----------------------------------------------|-----|----------|-------------|----------|-----------|-----------|----------|------|
| JN | Upper Black River Drain,                     | 5   | 18<br>00 | 1<br>2      | 99       | 0.0<br>03 | 0.0<br>29 | 41       | 274  |
| 4a | 55th Street                                  | Э   | 19<br>78 | 1<br>2      | 12<br>1  | 0.0<br>04 | 0.0<br>35 | 23       | 214  |
| JN | Litter Drain, E6th Street                    | 10  | 18<br>00 | 2<br>8      | 17<br>8  | 0.0<br>04 | 0.0<br>27 | 12<br>6  | 650  |
| 4b | Utter Drain, 56th Street                     | 10  | 19<br>78 | 3<br>7      | 22<br>2  | 0.0<br>06 | 0.0<br>34 | 12<br>6  | 650  |
| JS | South Br. Black River,                       | 125 | 18<br>00 | 2<br>6<br>0 | 14<br>30 | 0.0<br>03 | 0.0<br>18 | 15<br>74 | 8003 |
| 1  | conf. with Butternut Creek                   | 125 | 19<br>78 | 3<br>7<br>6 | 17<br>83 | 0.0<br>05 | 0.0<br>22 | 19<br>86 | 8986 |
| JS | South Br. Black River,                       | 114 | 18<br>00 | 2<br>5<br>7 | 14<br>20 | 0.0<br>04 | 0.0<br>19 | 15<br>09 | 7499 |
| 2  |                                              | 114 | 19<br>78 | 3<br>7<br>6 | 17<br>83 | 0.0<br>05 | 0.0<br>24 | 18<br>55 | 8298 |
| JS | South Br. Black River,                       | 83  | 18<br>00 | 2<br>1<br>4 | 11<br>98 | 0.0<br>04 | 0.0<br>22 | 11<br>35 | 5560 |
| 3  | gage 04102700                                | 00  | 19<br>78 | 3<br>2<br>9 | 15<br>49 | 0.0<br>06 | 0.0<br>29 | 14<br>55 | 6297 |
| JS | South Br. Black River,                       | 67  | 18<br>00 | 1<br>8<br>4 | 10<br>40 | 0.0<br>04 | 0.0<br>24 | 91<br>7  | 4476 |
| 4  | conf. with Maple Creek                       | 07  | 19<br>78 | 2<br>8<br>4 | 13<br>55 | 0.0<br>07 | 0.0<br>32 | 11<br>61 | 5034 |
| JS | South Br. Black River, conf. with Great Bear | 41  | 18<br>00 | 1<br>3<br>5 | 73<br>9  | 0.0<br>05 | 0.0<br>28 | 64<br>5  | 2945 |
| 5  |                                              | 41  | 19<br>78 | 2<br>0<br>9 | 99<br>3  | 0.0<br>08 | 0.0<br>38 | 77<br>5  | 3224 |
| JS | Haven and Max Lake                           | 40  | 18<br>00 | 5<br>2      | 28<br>0  | 0.0<br>07 | 0.0<br>36 | 20<br>0  | 894  |
| 6  | Drain, Great Bear Lake outlet                | 12  | 19<br>78 | 8<br>8      | 39<br>0  | 0.0<br>11 | 0.0<br>50 | 28<br>1  | 1071 |

# Appendix

# Appendix A: Black River Hydrologic Model Parameters

This appendix is provided so that the model may be recreated. Table A1 provides the design rainfall values specific to the region of the state where the Black River is located. Figure A1 summarizes the hydrologic elements in the HEC-HMS model. Tables A2 and A3 provide the parameters that were specified for each of these hydrologic elements. The initial loss field in HEC-HMS is left blank so that the default equation based on the curve number is used. Table A4 provides the reach parameters for the lag routing method. HEC-HMS was run for a ten-day duration using a five-minute computation interval.

Table A1: Design Rainfall Values

| SCS Type II Precipitation Event | Precipitation | Area-<br>adjusted<br>Precipitation<br>* |
|---------------------------------|---------------|-----------------------------------------|
| 50% chance (2-year), 24-hour    | 2.37 inches   |                                         |
| storm                           |               | 2.17 inches                             |
| 4% chance (25-year), 24-hour    | 4.45 inches   |                                         |
| storm                           |               | 4.07 inches                             |

\*standard values were multiplied by 0.914 to account for the watershed size

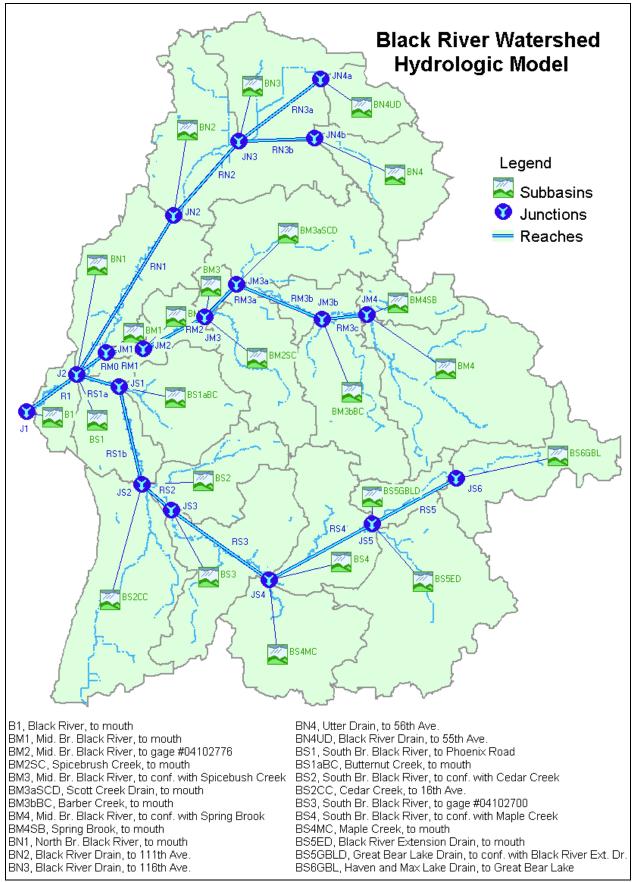



Figure A1: Hydrologic Elements defined for HEC-HMS model

|         | Subbasins                                                            | Drainage<br>Area<br>(sq. mi.) | Cu<br>Nun | noff<br>rve<br>nber | Initial<br>Loss |
|---------|----------------------------------------------------------------------|-------------------------------|-----------|---------------------|-----------------|
| ID      | Description                                                          | ,                             | 1800      | 1978                |                 |
| B1      | Black River to mouth                                                 | 3.64                          | 63        | 70                  |                 |
| BM1     | Middle Branch Black River to mouth                                   | 0.93                          | 64        | 62                  | Default         |
| BM2     | Middle Branch Black River at gage #04102776                          | 4.56                          | 58        | 61                  | Default         |
| BM2SC   | Spicebush Creek to mouth                                             | 11.23                         | 64        | 65                  | Default         |
| BM3     | Middle Branch Black River at<br>confluence with Spicebush Creek      | 7.14                          | 59        | 62                  | Default         |
| BM3aSCD | Scott Creek Drain to mouth                                           | 17.14                         | 58        | 60                  | Default         |
| BM3bBC  | Barber Creek to mouth                                                | 13.28                         | 63        | 61                  | Default         |
| BM4     | Middle Branch Black River to<br>confluence with Spring Brook         | 24.70                         | 64        | 67                  | Default         |
| BM4SB   | Spring Brook to mouth                                                | 4.91                          | 56        | 59                  | Default         |
| BN1     | North Branch Black River to mouth                                    | 15.96                         | 63        | 71                  | Default         |
| BN2     | Black River Drain to 111th Avenue                                    | 20.55                         | 64        | 66                  | Default         |
| BN3     | Black River Drain to 116th Avenue                                    | 13.66                         | 70        | 68                  | Default         |
| BN4     | Utter Drain to 56th Avenue                                           | 10.26                         | 67        | 67                  | Default         |
| BN4UD   | Black River Drain to 55th Avenue                                     | 5.38                          | 63        | 59                  | Default         |
| BS1     | South Branch Black River to Phoenix<br>Road                          | 8.27                          | 65        | 69                  | Default         |
| BS1aBC  | Butternut Creek to mouth                                             | 10.87                         | 62        | 67                  | Default         |
| BS2     | South Branch Black River to<br>confluence with Cedar Creek           | 9.05                          | 65        | 69                  | Default         |
| BS2CC   | Cedar Creek to 16th Avenue, gage #04102720                           | 21.58                         | 68        | 67                  | Default         |
| BS3     | South Branch Black River to Gage #04102700                           | 16.42                         | 68        | 71                  | Default         |
| BS4     | South Branch Black River to<br>confluence with Maple Creek           | 12.01                         | 65        | 66                  | Default         |
| BS4MC   | Maple Creek to mouth                                                 | 14.14                         | 66        | 71                  | Default         |
| BS5ed   | Black River Extension Drain to mouth                                 | 24.16                         | 70        | 71                  | Default         |
| BS5GBLD | Great Bear Lake Drain to confluence with Black River Extension Drain | 4.43                          | 67        | 68                  | Default         |
| BS6GBL  | Haven and Max Lake Drain to Great<br>Bear Lake                       | 12.18                         | 70        | 74                  | Default         |
|         | Total                                                                | 286                           |           |                     |                 |

|                |                      |                                     | Storage                            | Coefficient                   |
|----------------|----------------------|-------------------------------------|------------------------------------|-------------------------------|
| Subbasin<br>ID | Land Use<br>Scenario | Time of<br>Concentration<br>(hours) | 50%<br>chance,<br>24-hour<br>storm | 4% chance<br>24-hour<br>storm |
| D4             | 1800                 | 44.40                               | 23.41                              | 19.03                         |
| B1 -           | 1978                 | 11.18                               | 21.52                              | 18.03                         |
| DN14           | 1800                 | F 0F                                | 5.35                               | 5.35                          |
| BM1 -          | 1978                 | 5.35                                | 5.35                               | 5.35                          |
| DMO            | 1800                 | 40.50                               | 27.61                              | 22.86                         |
| BM2            | 1978                 | 12.53                               | 17.72                              | 15.99                         |
| DM000          | 1800                 | 47.40                               | 43.30                              | 35.40                         |
| BM2SC          | 1978                 | 17.18                               | 27.21                              | 24.43                         |
| 5146           | 1800                 | 17.00                               | 40.97                              | 34.23                         |
| BM3            | 1978                 | 17.33                               | 24.36                              | 22.21                         |
|                | 1800                 |                                     | 39.35                              | 31.66                         |
| BM3aSCD        | 1978                 | 14.48                               | 27.59                              | 23.55                         |
|                | 1800                 |                                     | 51.28                              | 41.44                         |
| BM3bBC         | 1978                 | 18.95                               | 42.29                              | 35.68                         |
|                | 1800                 |                                     | 62.28                              | 51.51                         |
| BM4            | 1978                 | 24.39                               | 49.19                              | 42.41                         |
|                | 1800                 |                                     | 22.19                              | 16.65                         |
| BM4SB          | 1978                 | 7.64                                | 16.53                              | 12.80                         |
|                | 1800                 |                                     | 72.77                              | 63.45                         |
| BN1 -          | 1978                 | 37.51                               | 51.83                              | 48.03                         |
|                | 1800                 |                                     | 65.81                              | 53.76                         |
| BN2            | 1978                 | 24.40                               | 38.01                              | 34.64                         |
|                | 1800                 |                                     | 63.21                              | 49.65                         |
| BN3            | 1978                 | 20.03                               | 42.17                              | 36.15                         |
|                | 1800                 |                                     | 41.29                              | 31.97                         |
| BN4            | 1978                 | 13.58                               | 28.53                              | 23.77                         |
|                | 1800                 |                                     | 31.23                              | 22.56                         |
| BN4UD          | 1978                 | 9.38                                | 12.44                              | 11.19                         |
|                | 1800                 |                                     | 53.09                              | 45.74                         |
| BS1 -          | 1978                 | 25.45                               | 34.58                              | 32.13                         |
|                | 1800                 |                                     | 19.25                              | 13.91                         |
| BS1aBC         | 1978                 | 7.37                                | 8.73                               | 8.00                          |
|                | 1800                 |                                     | 20.61                              | 17.51                         |
| BS2            | 1978                 | 11.03                               | 17.14                              | 14.96                         |
|                | 1800                 |                                     |                                    |                               |
| BS2CC          |                      | 25.98                               | 57.45                              | 49.38                         |
|                | 1978                 |                                     | 33.77                              | 31.72                         |
| BS3            | 1800                 | 25.86                               | 52.01                              | 45.08                         |
|                | 1978                 |                                     | 40.92                              | 37.40                         |
| BS4            | 1800                 | 17.52                               | 40.94                              | 34.26                         |
|                | 1978                 |                                     | 31.88                              | 27.83                         |
| BS4MC          | 1800                 | 11.30                               | 28.41                              | 22.70                         |
|                | 1978                 |                                     | 19.56                              | 16.95                         |
| BS5ed          | 1800                 | 19.16                               | 54.25                              | 43.65                         |
|                | 1978                 |                                     | 36.68                              | 31.66                         |

Table A3: Subbasin Parameters – Times of Concentration and Storage Coefficients

|                |                      |                                     | Storage Coefficient                |                                |  |  |  |
|----------------|----------------------|-------------------------------------|------------------------------------|--------------------------------|--|--|--|
| Subbasin<br>ID | Land Use<br>Scenario | Time of<br>Concentration<br>(hours) | 50%<br>chance,<br>24-hour<br>storm | 4% chance,<br>24-hour<br>storm |  |  |  |
| BS5GBLD        | 1800                 | 9.43                                | 29.44                              | 21.62                          |  |  |  |
| DOJODED        | 1978                 | 5.40                                | 22.97                              | 17.89                          |  |  |  |
| BS6GBL         | 1800                 | 12.46                               | 34.33                              | 27.09                          |  |  |  |
| DOUGDL         | 1978                 | 12.40                               | 26.73                              | 22.19                          |  |  |  |

### Table A4: Channel Reach Parameters

| ID   | Reach                                                                       | Lag<br>(minutes) |
|------|-----------------------------------------------------------------------------|------------------|
| R1   | Black River, to mouth                                                       | 398              |
| RN1  | North Branch Black River, to confluence with South Branch                   | 924              |
| RN2  | North Branch Black River, to 111 <sup>th</sup> Avenue                       | 454              |
| RN3a | North Branch Black River, to 116 <sup>th</sup> from Upper Black River Drain | 562              |
| RN3b | North Branch Black River, to 116 <sup>th</sup> from Utter Drain             | 194              |
| RM0  | Middle Branch Black River, to confluence with South Branch                  | 238              |
| RM1  | Middle Branch Black River, to confluence with North Branch                  | 71               |
| RM2  | Middle Branch Black River, to gage 04102776                                 | 533              |
| RM3a | Middle Branch Black River, to confluence with Spicebush Creek               | 200              |
| RM3b | Middle Branch Black River, to confluence with Scott Creek Drain             | 564              |
| RM3c | Middle Branch Black River, to confluence with Barber Creek                  | 225              |
| RS1a | South Branch Black River, to confluence with North Branch                   | 299              |
| RS1b | South Branch Black River, to confluence with Butternut Creek                | 809              |
| RS2  | South Branch Black River, to confluence with Cedar Creek                    | 247              |
| RS3  | South Branch Black River, to gage 04102700                                  | 788              |
| RS4  | South Branch Black River, to confluence with Maple Creek                    | 738              |
| RS5  | South Branch Black River, to confluence with Great Bear Lake Drain          | 380              |

### **Appendix O: Black River Morphology Report**

#### Black River Morphology Report Kregg Smith, Michigan Department of Natural Resources April 2005

For most of Michigan's streams, the physical and ecological processes that determine channel conditions have been degraded by human activities to the detriment of the aquatic resource. Most watersheds have been perturbed to some extent. Civilization's modern requirements for a host of different resource uses have placed great stress on many flowing river systems. Balancing these resource activities of the river and the ability to predict the response of the river to imposed damage requires reliable predictions to clearly understand the functions of the river and the physical variables which influence river behavior. Clearly, it is impossible to restore entire river systems to their conditions prior to initial settlement of the watershed. However, restoration can be defined as movement of an ecosystem toward an approximation (not necessarily a re-creation) of its condition prior to disturbance.

An assessment of the morphological stability of a river system is an important step in selecting remediation techniques for water quality and fisheries impairments. Morphologically described stream types based on field measurements are described by Rosgen (1994, 1996). The use of reference reach data, characteristic of the stable channel morphology in a particular valley type, can provide design variables for applications in stream restoration. Rosgen describes an assortment of stream types delineated by slope, channel material, width/depth ratios, sinuosity, and entrenchment ratio. Entrenchment ratio is the ratio of the width of the flood-prone area to the surface width of the bankfull channel, and provides a quantitative description of the vertical containment of the river. Sinuosity is the measurement of a streams meandering pattern and defined as the ratio of stream length to valley length. Width/depth ratios are described as the ratio of the bankfull surface width to the mean depth of the bankfull channel and an important variable to understand the distribution of available energy within a channel. Width/depth ratios are the most sensitive and positive indicator of trends in channel stability and can be used to interpret shifts in channel stability following disturbances to channels or watersheds. The stream types are described at the morphological description stage (Level II) of Rosgen's hierarchical classification system. This classification system groups variables of similar stream morphology to reduce statistical variance between the groups. Rosgen utilizes four fundamental principles of river systems: bankfull discharge; stream channel dimension, pattern, and profile.

Several objectives of the Black River Watershed Management Plan and watershed stakeholders involve achievement of a natural stream channel to restore the Black River to a functioning river system. The stability of a stream is a major determinant of its condition and a prerequisite for its optimum functioning. Stream stability as defined by Rosgen (1996) as the ability of the stream to maintain, over time, its dimension, pattern, and profile in such a manner that it is neither aggrading nor degrading. Therefore we used the Rosgen classification system to describe the current state of six locations of the Black River in Allegan and Van Buren Counties. An assessment of condition was determined by the level III and IV Rosgen methodology. The study design was established to assist in the assessment of cumulative watershed impacts, provide a method to utilize sediment data, bank erosion, and stability predictions for future implementation phases and will be integrated with inventories of fish habitat potential.

We used the Shield's threshold of motion equation to calculate the sediment particle size that would be transported given bankfull discharges. The following equation summarizes our calculations:

 $Ds = t / ((p_s - p) g 0.06) (304.8)$ 

Ds=diameter sediment particle (mm)

t=shear stress= (pg) (depth) (slope) (lb/ft2) (N/m2)  $p_s$ =density of sediment (5.15 slugs/ft3) or (2560 kg/m3) p=density of water (1.94 slugs/ft3) (1000 kg/m3) g=gravitational acceleration (32.2 ft/s2) (9.81 m/s2) 0.06 = Shield's parameter typically in the range of 0.04 to 0.07

Conversion Constant 304.8 mm/ft or 1000 mm/m

The first site selected was in the North Branch Black River near the 68<sup>th</sup> Street and 108<sup>th</sup> Avenue intersection. This location is in section 16 of Casco Township, Allegan County. The second location was in the Middle Branch Black River near the 60<sup>th</sup> Street and 106<sup>th</sup> Avenue intersection. The second location is centrally located between Casco

and Lee Townships, Allegan County. The third location was in the South Branch Black River below Hamilton Street in the city of Bangor, Van Buren County. These three locations were surveyed on the 13 and 14 May, 2004. During the fall of 2004 three additional sites were surveyed. Another location in the Middle Branch at 68<sup>th</sup> Street was surveyed in section 27 of Casco Township, Allegan County. A stream reach in the Haven and Max Lake Drain located in section 16 of Bloomingdale Township, Van Buren County was also surveyed. The third fall survey was conducted in the South Branch at the Phoenix Road crossing in section 6 of Geneva Township, Van Buren County.

#### **Spring Reaches:**

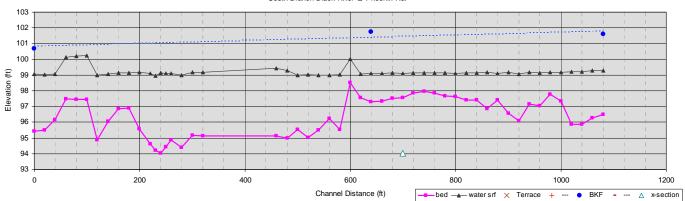
The North Branch reach was classified as E5 (Table 1). This reach is located within a lacustrine valley dominated by small sediment particle sizes. Stream types with an E classification are defined as the developmental "end-point" of channel stability and fluvial process efficiency for certain alluvial streams undergoing a natural dynamic sequence of system evolution (Rosgen, 1996). It should be noted that these classifications have been widely justified in other parts of the U.S. but has not been justified for Michigan streams and therefore the following descriptions are based on Rosgen's delineative criteria. The E stream types are typically slightly entrenched with an entrenchment ratio greater than 2.2, these streams exhibit low channel width/depth ratios (<12), and display very high channel sinuosity (>1.5). The North Branch was slightly entrenched (19.7) as it flowed through a forested floodplain. The width/depth ratio was 10.7 with a lower channel sinuosity (1.1) than is typical for this type of stream. The slope (0.002) and channel bed material (Glendora Loamy Sand) classify the stream as E5. Rosgen (1996) notes that the E5 stream type are hydraulically efficient channel forms and they maintain a high resistance to form adjustment that results in channel stability without significant downcutting. Shear stress calculated for this stream reach indicated a high (0.77 lbs/ft. sq.) near bank stress rating (Table 1). At the measured channel slope and average bankfull depth, the particle diameter mobilized at bankfull discharges was calculated at 25 mm. Stream channels of type E are stable unless compromised by disturbances that change sediment supply or streamflow. A hydrology study currently being done could provide valuable information to the validity of these findings.

Both the Middle (60<sup>th</sup> Street) and South Branch (Hamilton St.) reaches were classified as C5 (Table 1). The Middle Branch flows through a lacustrine valley dominated by sand, while the South Branch reach was located in a valley with surface geology types consisting of fine textured glacial till and end Moraines of fine textured till. Upstream of this reach in the South Branch Black River coarser material of glacial till and end moraines are found, where presently the Bangor and Breedsville Dams are located. Rosgen describes the C stream type as having a well developed floodplain, relatively sinuous, and having a low relief channel. The South Branch reach had a slope of 0.0028, while the Middle Branch had a slope of 0.003. These stream reaches had lower than average width/depth ratios of 13.39 for the Middle Branch and 14.83 for the South Branch. Sinuosity's for both reaches were also lower than average for the Middle Branch (1.57) and particularly the South Branch (1.2). The Middle Branch reach was dominated by channel bed material of the Glendora Loamy Sand association identifying this reach as C5. The downstream section of the South Branch reach was dominated by channel bed materials associated with the Glendora Sandy Loam association, however, evidence of cobble was observed at the upstream section of the reach below the Hamilton Street Bridge. Shear stress calculations for the South Branch (0.45 lbs/ft.sq.) and Middle branch (0.47 lbs/ft.sq.) reaches indicated a moderate near bank stress rating (Table 1). At the measured channel slope and average bankfull depth, the particle diameter mobilized at bankfull discharges was calculated at 22 and 23 mm, respectively. Stream channels with a classification of C5 typically have a higher width/depth ratio than preceding C stream types because of the depositional nature of these streambed materials and the susceptibility for active lateral migration. Rates of lateral migration are influenced by the presence and condition of the riparian vegetation, in which sediment supply could be high unless stream-banks are in a very low erodibility condition. Maintenance of the riparian vegetation along this stream reach is important. Establishing a native prairie buffer would reduce sediment supply and therefore reduce the abrasive power applied to the eroding streambank locations. Attempts to stabilize the eroding banks at Lion's Park in the city of Bangor would be best accomplished using the information and data collected during this survey. According to the stream channel dimension and profiles in this reach, appropriate structures include a cross-vane, soil lifts, and regrading. The C5 stream type is very susceptible to changes in lateral and vertical stream stability caused by direct channel disturbances that change the flow and sediment regimes of the watershed.

Restoring natural stability using design criteria collected during this initial survey will ensure that channel adjustments will be limited to the predicted conditions of the stream channel characteristics and existing flow regime.

#### Fall Reaches:

Haven and Max Lake Drain flows within a valley with surface geology consisting of coarse textured glacial till. This reach was classified as E5 (Table 1). Shear stress calculations indicated a moderate near bank stress rating (0.54 lbs/ft. sq.). At the measured channel slope and average bankfull depth, the particle diameter mobilized at bankfull discharges was calculated at 27 mm. Width to depth ratio for this stream was measured at an expected low ratio (<12) for this stream type. Stream reaches with lower width to depth ratios generally do not experience stress placed within the near bank region. Sinuosity for this reach was normal for a type E stream classification. Evidence of lateral migration of the stream bank was present at this site, but could be related to anthropogenic factors. Stream bank stabilization structures that are engineered to restore the natural stability of this stream reach would allow for the function of the stream to be achieved along with reaching societal values at the land use site. Information and data collected during this survey can be used to determine the departure of existing conditions from previous conditions and to determine the channel dimensions that need to be restored. Appropriate structures that we propose to achieve the stability at this stream reach are soil lifts and stone to protection wrapped in natural materials and seeded with native grass plantings. Several land use problems located at this site could be preventing the stream from achieving a stable form, including an inappropriately designed road crossing structure at 42<sup>nd</sup> Street and the parking lot adjacent to the stream. Most of the instream changes in stream channel design could be a result of stormwater runoff that is transporting excess sediment to the Haven and Max Lake Drain. Wetland filters and native prairie buffers would allow for the infiltration of stormwater runoff and deposit sediment so that it does not enter the stream at excessive rates.


The Middle Branch reach at 68<sup>th</sup> Street was confined as it flowed through a valley with surface geology consisting of lacustrine sand. This stream reach was classified as a type F5 (Table 1). The F5 stream type is sand dominated, entrenched, meandering channel, resulting in the abandonment of former floodplains. Sediment supply in this stream type is generally moderate to high. Therefore, the ecology of this stream reach depends on downstream floodplains to dissipate stream power and deposit its suspended sediment load. Width to depth ratios in this stream reach were moderate (11.2) with moderate sinuosity measured at 1.32. Shear stress calculations for this reach were 0.57 lbs./ft<sup>2</sup>. Stream bank erosion rates can be moderate to high in this reach as side slope rejuvenation and mass-wasting processes attempt to enhance the fluvial entrainment of eroded bank materials. At the measured channel slope and average bankfull depth, the particle diameter mobilized at bankfull discharges was calculated at 19 mm. This particle size can be easily transported with only minor changes to the hydrology in the watershed.

The South Branch reach at Phoenix Road flows through a valley with lacustrine sand deposits. This stream reach was classified as an F6 stream type (Table 1). Upstream of the measured channel reach the streambed sediment consists of cohesive sand deposits. However, the measured stream reach consisted of unconsolidated silts and sands, likely a result of anthropogenic disturbance. The F6 stream type is associated with depositional soils involving a combination of river downcutting and/or uplift of the valley walls (Rosgen 1996). F6 stream systems produce relatively low bedload, but high suspended load, sediment yields because of the lack of coarse material in the channels. Shear stress calculations at this reach were 1.17 lbs./ft<sup>2</sup>, indicating a high erodibility force. At the measured channel slope and average bankfull depth, the particle diameter mobilized at bankfull discharges was calculated at 12 mm. This stream reach illustrates the impacts that poor land use practices have on stream profile and dimension. The stream crossing at Phoenix Road has a steel sheet-piling wall that directs the stream flow under the structure. The longitudinal profile illustrates an example of unstable streambed conditions typically called a dune and anti-dune effect (Figure 1). This condition results in excessive stream sediment transport as the streambed attempts to recover after disturbance. These stream types are very sensitive to disturbance and adjust rapidly to changes in flow regime and sediment supply from the watershed. Future data collection at this site will allow for the determination of impacts to stream habitat and changes in stream profile after disturbance.

| Waterbody            | location     | Entrenchment<br>Ratio | Width/depth<br>Ratio | Sinuosity | Slope<br>Ft./ft. | Channel<br>Material | Stream<br>Type | Shear<br>Stress<br>Lbs./ft.sq. |
|----------------------|--------------|-----------------------|----------------------|-----------|------------------|---------------------|----------------|--------------------------------|
| North Branch         | 68 St.       | 19.7                  | 10.7                 | 1.1       | 0.002            | Glendora Loamy Sand | E5             | 0.77                           |
| Middle Branch        | 60St.        | >2.2                  | 13.39                | 1.57      | 0.002            | Glendora Loamy Sand | C5             | 0.47                           |
| South Branch         | Hamilton St. | >2.2                  | 14.83                | 1.2       | 0.002            | Glendora Sandy Loam | C5             | 0.45                           |
| Haven/Max Lake Drain | 42 St.       | >2.2                  | 8.41                 | 1.47      | 0.003            | Algansee-Cohoctah   | E5             | 0.54                           |
| South Branch         | Phoenix Rd.  | <1.4                  | 6.2                  | 1.13      | 0.0004           | Algansee-Cohoctah   | F6             | 1.17                           |
| Middle Branch        | 68 St.       | <1.4                  | 11.2                 | 1.32      | 0.0013           | Glendora Loamy Sand | F5             | 0.57                           |

Table 1. River delineation data collected at six stream reaches in the Black River watershed.

Figure 1. Longitudinal profile of the South Branch Black River at Phoenix Road.



South Branch Black River @ Phoenix Rd.

# Appendix P: National Pollutant Discharge Elimination System (NPDES) Permits

| Name                           | City         | County    | Expiration<br>Date       | Permit Type      |
|--------------------------------|--------------|-----------|--------------------------|------------------|
| Organic/LaGrange Inc           | Fennville    | Allegan   | 10/1/2008                | NPDES            |
| Fennville WWSL                 | Fennville    | Allegan   | 4/1/2009                 | NPDES            |
| MDEQ-RRD-Pullman               | Pullman      | Allegan   | 10/1/2003                | NPDES            |
| Inverness Castings-Bangor      | Bangor       | Van Buren | 10/1/2008                | NPDES            |
| Bangor Electronics-Bangor      | Bangor       | Van Buren | 4/1/2008                 | NPDES            |
| Bangor WWSL                    | Bangor       | Van Buren | 4/1/2009                 | NPDES            |
| Pullman Ind Inc-Bloomingdale   | Bloomingdale | Van Buren | 4/1/2008                 | NPDES            |
| CECO-Palisades Power Plant     | Covert       | Van Buren | 10/1/2003                | NPDES            |
| Covert Gen Co/South Haven WTP  | Covert       | Van Buren | 10/1/2003                | NPDES            |
| Covert Public Schools WWSL     | Covert       | Van Buren | 4/1/2009                 | NPDES            |
| Country Holiday Estates MHP    | Paw Paw      | Van Buren | 4/1/2009                 | NPDES            |
| South Haven WWTP               | South Haven  | Van Buren | 10/1/2003                | NPDES            |
| Trelleborg YSH Inc-S Haven     | South Haven  | Van Buren | 10/1/2008                | NPDES            |
| MDEQ-RRD-Jericho               | South Haven  | Van Buren | 10/1/2008                | NPDES            |
| Application Engineering Inc    | South Haven  | Van Buren | 4/1/2008                 | NPDES            |
| Mich Aluminum Alloys LTD       | South Haven  | Van Buren | 4/1/2008                 | NPDES            |
| Port of Call West MHC          | South Haven  | Van Buren | 4/1/2009                 | NPDES            |
| Bangor Electronics-Bangor      | Bangor       | Van Buren | 4/1/2009                 | NPDES Stormwater |
| Michigan Slip-Bangor           | Bangor       | Van Buren | 4/1/2009                 | NPDES Stormwater |
| Bangor Plastics-Bangor         | Bangor       | Van Buren | 4/1/2009                 | NPDES Stormwater |
| Covert Generating Company      | Covert       | Van Buren | 4/1/2009                 | NPDES Stormwater |
| All Seasons Marine-South Haven | South Haven  | Van Buren | 4/1/2007                 | NPDES Stormwater |
| B & K Machine Prod-South Haven | South Haven  | Van Buren | 4/1/2009                 | NPDES Stormwater |
| Consumers Concrete-224-S Haven | South Haven  | Van Buren | 4/1/2009                 | NPDES Stormwater |
| Consumers Concrete-7-S Haven   | South Haven  | Van Buren | 4/1/2009                 | NPDES Stormwater |
| Clarion Tech Inc-South Haven   | South Haven  | Van Buren | 4/1/2004                 | NPDES Stormwater |
| Epworth Mfg Co Inc             | South Haven  | Van Buren | 4/1/2004                 | NPDES Stormwater |
| M-140 Auto Parts-South Haven   | South Haven  | Van Buren | 4/1/2009                 | NPDES Stormwater |
| Pullman Ind Inc-South Haven    | South Haven  | Van Buren | 4/1/2009                 | NPDES Stormwater |
| South Haven Regional Airport   | South Haven  | Van Buren | n Buren 4/1/2009 NPDES S |                  |
| Howard Motors-S Haven          | South Haven  | Van Buren | 4/1/2009                 | NPDES Stormwater |
| Mich Aluminum Alloys LTD       | South Haven  | Van Buren | 4/1/2009                 | NPDES Stormwater |
| DSM Pharma Chem-South Haven    | South Haven  | Van Buren | 4/1/2009                 | NPDES Stormwater |

Source: MDEQ 2004

## Appendix Q: Education Plan: Black & Paw Paw River Watersheds

### **Introduction**

The Black River Watershed and Paw Paw River Watershed Information & Education (I&E) Plan was formulated through the efforts of the joint information & education sub-committee. This sub-committee consisted of members from both watershed Steering Committees. The purpose of the plan is to provide a framework to inform and motivate the various stakeholders, residents and other decision makers within the Black River and Paw Paw River watersheds to take appropriate actions to protect water quality. This working document will also provide a starting point for organizations within the watersheds looking to provide educational opportunities or outreach efforts.

The geography of the Black River and Paw Paw River watersheds lend themselves to a partnership approach, which has been a focal point for all information and education efforts to date within the watersheds. With both watersheds sharing multiple municipal boundaries as well as many similar water quality concerns, a partnership approach to education and outreach enables both watershed projects to maximize their resources and effectively reach a larger audience than could be accomplished alone.

### Information & Education Goal

The I&E plan will help to achieve the watershed management goals by increasing the involvement of the community in watershed protection efforts through awareness, education and action. The watershed community can become involved only if they are informed of the issues and are provided information and opportunities to participate.

The I&E plan lists specific tasks to be completed. These tasks will increase the general awareness of watersheds and water quality issues for all audiences, educate target audiences on specific issues and motivate target audiences to implement practices to improve and protect water quality. These practices may include homeowner activities such as reducing fertilizer use, maintaining septic systems, installing a rain garden or maintaining stream buffers. Practices for governmental units or officials may include incorporating watershed protection language into master plans and zoning ordinances, reducing the amount of salt used for deicing and utilizing low impact development techniques on public property.

### Target Audiences

The level of understanding of watershed concepts and management, the concerns, values and level of enthusiasm can all vary between different audience groups. Recognizing differences between groups of target audiences is critical to achieving success through education and outreach efforts. Educational messages may need to be tailored to effectively reach different audiences. It is important to understand key motivators of each target audience to establish messages that will persuade them to adopt behaviors or practices to protect and improve water quality. The table below lists and describes the major target audiences for the Paw Paw and Black River Watersheds and specific messages and activities that could be used to reach each audience.

| Target<br>Audiences                      | Description of Audience                                                                                                                                                                                                                                                                                                                           | General Message<br>Ideas                                                                                                                                                                                                                       | Potential Activities                                                                                                                                                                                                                                                                    |
|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Businesses                               | This audience includes businesses<br>engaging in activities that can<br>impact water quality such as lawn<br>care companies, landscapers, car<br>washes, etc.                                                                                                                                                                                     | Clean water helps to<br>ensure a high quality of<br>life that attracts workers<br>and other businesses.                                                                                                                                        | Workshops and presentations<br>Brochures/flyers/fact sheets<br>One-on-one contact                                                                                                                                                                                                       |
| Developers /<br>Builders /<br>Engineers  | This audience includes developers, builders and engineers.                                                                                                                                                                                                                                                                                        | Water quality impacts property values.                                                                                                                                                                                                         | Newsletter articles<br>Workshops and presentations<br>Watershed tours<br>Brochures/flyers/fact sheets<br>Trainings                                                                                                                                                                      |
| Farmers                                  | This audience includes both<br>agricultural landowners and those<br>renting agricultural lands and<br>farming them.                                                                                                                                                                                                                               | Protecting water quality<br>is a long-term<br>investment by saving<br>money by decreasing<br>inputs (fuel, fertilizer)                                                                                                                         | Workshops and presentations<br>Brochures/flyers/fact sheets<br>One-on-one contact<br>Watershed tours<br>Newsletter articles                                                                                                                                                             |
| Government<br>Officials and<br>Employees | This audience includes elected<br>(board and council members) and<br>appointed (planning commissions<br>and zoning board of appeals)<br>officials of cities, townships,<br>villages and the county. This<br>audience also includes the drain<br>commission and road commission<br>staff. It also includes state and<br>federal elected officials. | Water quality impacts<br>economic growth<br>potential.<br>Water quality impacts<br>property values and the<br>tax revenue generated<br>in my community to<br>support essential<br>services.<br>Clean drinking water<br>protects public health. | One-on-one contact<br>Trainings<br>Workshops and presentations<br>Brochures/flyers/fact sheets<br>Watershed tours<br>Educational videos<br>Watershed Management Plan User<br>Guide                                                                                                      |
| Kids / Students                          | This audience includes any child<br>living or going to school in the<br>watershed.                                                                                                                                                                                                                                                                | Clean water is<br>important for humans<br>and wildlife. We all<br>depend on water.                                                                                                                                                             | Student stream monitoring<br>Teacher training workshops<br>Curriculum<br>Educational videos                                                                                                                                                                                             |
| Property<br>Owners                       | This audience includes any property owner in the watershed.                                                                                                                                                                                                                                                                                       | Water quality impacts<br>my property value and<br>my health.                                                                                                                                                                                   | PSAs and press releases<br>Display/materials at festivals<br>Workshops and presentations<br>Watershed Tours<br>Tax/utility bill inserts<br>Website/YouTube video<br>Workshops and presentations<br>Brochures/flyers/fact sheets<br>One-on-one contact<br>"Entering the watershed" signs |
| Riparian<br>Property<br>Owners           | This audience includes those<br>property owners that own land<br>along a river, stream, drain or lake.                                                                                                                                                                                                                                            | Water quality impacts<br>my property value and<br>my health.                                                                                                                                                                                   | Newsletter articles<br>Door knob hangers<br>One-on-one contact<br>Videos<br>Workshops and presentations                                                                                                                                                                                 |
| Recreational<br>Users                    | This audience includes any person<br>who engages in recreational<br>activities.                                                                                                                                                                                                                                                                   | Water quality is<br>important for enjoying<br>recreational activities.                                                                                                                                                                         | Website/YouTube video<br>Kiosks<br>Newsletter articles<br>Brochures/flyers/fact sheets                                                                                                                                                                                                  |

### Watershed Issues

To begin formulating education and outreach strategies, it is important to identify the major issues, which need to be addressed to improve and protect water quality. The priority issues for the Black and Paw Paw River Watersheds are described below. Each of these issues relate back to the goals and actions in the Watershed Management Plans for the Black and Paw Paw Rivers.

Each issue is tied to pollutants of concern in the watersheds. For each issue, the audience(s) will need to not only understand the issue, but also the solutions or actions needed to protect or improve water quality. For each major issue, priority target audiences have been identified. The priority audiences were selected because of their influence or ability to take actions, which would improve or protect water quality.

### 1. Watershed Awareness

The Paw Paw and Black River Watersheds both have unique natural resources, but also have significant problems with water quality. Watershed residents need to understand that their every day activities affect the quality of those resources. All watershed audiences need to be made aware of the priority pollutants and their sources and causes in each of the watersheds. Lastly, education efforts should, whenever possible, offer audiences solutions to improve and protect water quality.

One effective way to increase general watershed awareness is through recreational activities. These activities can help instill a sense of stewardship of the resources needed to enjoy the activities. Rivers, lakes and streams can provide many enjoyable recreational activities such as fishing, paddling, boating and swimming. It is important for recreational users to understand and appreciate the natural resources within the watershed and to gain a level of knowledge about the protection of those natural resources. Water trails and public access to water bodies can ensure that the public is offered an opportunity to enjoy and recreate on the water resources within the watersheds.

### Priority Target Audiences: All, with focus on kids/students

Major Pollutants of Concern: sediment, nutrients, bacteria and pathogens, temperature, oil, grease and metals, pesticides

### Priority Area: Entire watershed

### 2. Land Use Change

Land use change can disrupt the natural hydrologic cycle in a watershed. Natural vegetation, such as forest cover, usually has high infiltration capacity and low runoff rates. Whereas, urbanized land cover has impervious areas (buildings, parking lots, roads) and networks of ditches, pipes and storm sewer, which augment natural drainage patterns. Impervious surfaces reduce infiltration and the recharge of groundwater while increasing the amount of runoff. Local governmental officials and builders/developers need to understand the water quality benefits of smart growth, low impact development, open space and farmland preservation and protection of wetlands, floodplains and riparian areas.

Current and past wetland loss in both urban and agricultural areas is a major concern in both the Paw Paw and Black River Watersheds. The loss of wetlands result in disrupted hydrology and degraded water quality. Further, many agricultural areas have been drained with extensive ditching to move water off the land quickly. While this helps with food production in these areas, water quality suffers. The high flow amounts and velocity can cause increased streambank erosion and sediment delivery. Educational efforts should target drain commissioners and farmers to better understand the water quality benefits of ditch naturalization techniques and the need for wetland protection and restoration.

**Priority Target Audiences:** Farmers, Governmental Officials and Employees, Developers/Builders/Engineers

### Major Pollutant of Concern: sediment

Priority Area: Paw Paw River Watershed High and Medium Priority Protection Areas

### 3. Stormwater Runoff

Stormwater runoff is caused when rain, snowmelt or wind carries pollutants off the land and into water bodies. Education efforts should increase awareness of stormwater pollutants, sources and causes, especially the impacts of impervious (paved or built) surfaces and their role in delivering water and pollutants to water bodies. Everyday homeowner and business actions are often the source and cause of stormwater pollution. These activities include lawn care practices, household hazardous waste and oil disposal, pet waste disposal and car and equipment care. Local government activities impacting stormwater runoff include land use planning, road and parking lot maintenance and construction, lawn care practices, oversight of construction sites and identification and correction of illicit discharges and connections.

Educational efforts should target property owners and businesses about the many best practices that can decrease the amount of water and pollutants coming from their property. In addition, local governmental units can be encouraged to implement low impact development and smart growth techniques in their plans and zoning ordinances. Local governments can also be encouraged to enact regulations such as a stormwater ordinance and a phosphorus ban for non-agricultural fertilizer use. Educational efforts can also promote municipal operations and maintenance best practices, which are important for reducing polluted runoff. These include best practices for road and parking lot construction and maintenance, lawn care and vehicle maintenance.

**Priority Target Audiences:** Property Owners, Builders/Developers/Engineers, Businesses, Governmental Officials and Employees

Major Pollutants of Concern: sediment, nutrients, bacteria and pathogens, temperature, oil, grease and metals, pesticides

Priority Area: Paw Paw River Watershed High and Medium Priority Urban Management Areas

### 4. Natural Resources Management and Preservation

Preserving land and managing natural resources is crucial for effective watershed management. Preservation and management of open space, wetlands, farmland and other natural features helps to reduce the amount of stormwater runoff entering water bodies, preserve natural ecosystems, endangered species as well as the services that the natural systems provide to us such as filtering drinking water and retaining storm water.

Invasive species, both aquatic and terrestrial; pose a threat to water quality and biodiversity in both watersheds. Education efforts should focus on identification and control techniques as well as the prevention of additional invasive species. Education efforts should also encourage the use of native Michigan plants for landscaping, wildlife habitat and other uses.

Recreational activities can often have a negative impact on sensitive areas. It may be necessary to understand carrying capacities for boats on lakes and rivers. In sensitive areas, there may be a need to limit recreational activities to ensure water quality and natural resources are protected. In addition, best management practices should be utilized to limit the impacts of recreational use on water and other natural resources. BMPs could include proper woody debris management for clearing rivers for navigation and installing and maintaining proper access sites to rivers and streams for fishing and canoeing.

Education efforts should instill a sense of understanding and appreciation for natural features. Property owners, developers and local governmental officials and employees need to be presented with options for preservation and management of natural resources. Educational efforts promoting smart growth, low impact and open space development and green infrastructure should target local government officials and employees and builders, developers and engineers.

**Priority Target Audiences:** Property Owners, Governmental Officials and Employees, Recreational Groups/Users, Developers/Builders/Engineers

Major Pollutants of Concern: sediment, temperature

Priority Area: Paw Paw River Watershed High and Medium Priority Protection Areas

### 5. Agricultural Runoff

Agricultural lands cover most of the area in the Black and Paw Paw River Watersheds, If not properly

managed, runoff from agricultural lands can impact the watershed by delivering pollutants such as sediment and nutrients. Education efforts should seek to help audiences understand the impacts of agricultural runoff. A key concept is the need to reduce soil erosion from agricultural lands. It is also important to understand that soil particles also carry nutrients and chemicals to water bodies. There are many best management practices for addressing soil erosion from agricultural lands. Best management practices include conservation tillage, filter strips, cover crops, grassed waterways, ditch naturalization and wetland restoration.

Drain maintenance activities, which often remove vegetation from riparian areas, contribute to soil erosion problems in agricultural areas. Drain maintenance projects should ensure as much riparian vegetation is left intact as possible and replace the vegetation with Erosion is an intrinsic natural process, but in many places it is increased by human land use. A certain amount of erosion is natural and, in fact, healthy. Excessive erosion, however, does cause problems, such as sedimentation of streams and lakes, ecosystem damage and outright loss of soil. Soil erosion on agricultural fields can be caused by water, wind and tillage practices. Soil loss, and its associated impacts, is of great concern to farmers.

native grasses, shrubs and trees if it needs to be removed. Another major concern is manure being applied to fields in the watershed especially fields with drain tiles, which connect to ditches and streams. For nutrients and bacteria and pathogens, agricultural best management practices include methane digesters, manure and/or nutrient management, restricting livestock access to water bodies, wetland restoration and soil testing. Lastly, for pesticide concerns, best management practices include organic production and integrated pest management techniques. Cost share and technical assistance programs are available to assist agricultural landowners in implementing many of these practices.

### Priority Target Audiences: Farmers

Major Pollutants of Concern: sediment, nutrients, bacteria and pathogens, pesticides

Priority Area: Paw Paw River Watershed High and Medium Priority Agricultural Management Areas

### 6. Septage Waste

Septage waste is both an urban and rural issue. In more rural areas and around lakes, failing or incorrectly installed septic systems impact water quality by adding excess nutrients, bacteria or other pollutants to the system. Education activities should seek to educate audiences about the impacts of septic systems on water quality. Proper maintenance of septic systems is a key practice for homeowners. Educational efforts should also target governmental units to encourage them to enact point of sale septic system inspection ordinances and to plan and zone for higher density development only in areas served by municipal sewer systems.

For urban areas, the proper operation and maintenance of municipal sewer infrastructure is necessary for protecting water quality. There is a widespread problem with aging infrastructure in urban areas, with some sewer systems dating over 100 years. Municipalities must ensure that combined sewer overflow events and other untreated releases of septage waste do not impact water quality. Educational efforts should target municipal officials and employees to encourage planning for adequate capacity, management, operation, and maintenance of sewer collection and treatment systems.

Priority Target Audiences: Governmental Officials and Employees, Riparian Property Owners

Major Pollutants of Concern: bacteria and pathogens, nutrients

**Priority Area:** Paw Paw River Watershed High and Medium Priority Urban Management Areas and E.coli TMDL watersheds (Pine and Mill Creek watersheds)

# **Distribution Formats**

Because of the differences between target audiences, it will sometimes be necessary to utilize multiple formats to successfully get the intended message across. Distribution methods include the media, newsletters and direct mailings, email lists and websites, and passive distribution of printed materials. Below is a brief description of each format with some suggestions on specific outlets or methods.

### 1. Media

Local media is a key tool for outreach to several audience groups. The more often an audience sees or hears information about watershed topics, the more familiar they will become and the more likely they will be to use the information in their daily lives. Keeping the message out in front through press releases and public service announcements is essential to the success of education and outreach efforts.

Newspapers include: the Herald Palladium, the Kalamazoo Gazette (including the Hometown Gazette), the Courier Leader, the Bangor Reminder, the South Haven Tribune, the South Bend Tribune, the Decatur Republican, the Tri-City Record, Michigan Farm News and the Farmer's Exchange.

Radio outlets include WMUK, WCSY, WKZO, WBCT, Michigan Farm Radio Network, WKMI – Kalamazoo, WDOW – Dowagiac

Television outlets include WWMT Channel 3, WOOD Channel 8, WZZM Channel 13, WGVU Channel 35 and WXMI FOX Channel 17.

### 2. Newsletters and other direct mailings

Several municipalities, governmental agencies, utilities, County offices and non-profit organizations send out newsletters or other mailings which may be coordinated with various outreach efforts such as fact sheets or "Did you Know" messages. Currently identified mailings include Van Buren County Drain Office, Village and City utility bills, Van Buren, Allegan and Berrien County Farm Bureau newsletters, USDA Farm Service Agency newsletters, Van Buren, Allegan and Berrien Conservation District newsletters, Sarett Nature Center, The Southwest Michigan Land Conservancy newsletters, MSUE, Southwest Michigan Planning Commission newsletters and The Stewardship Network.

### 3. E-Mail lists and Websites:

The Van Buren Conservation District and the Southwest Michigan Planning Commission maintain active websites and email lists which can be used to reach residents of the watersheds as well as elected officials and businesses. As part of the Information and Education plan, other organizations should be encouraged to supply watershed related educational materials through their websites where appropriate. Enviro-mich provides an opportunity to advertise events and workshops to a large audience. Enviro-mich is a list serve for those in Michigan interested in environmental issues.

### 4. Passive Distribution:

This method relies on the target audience picking up a brochure, fact sheet, or other information. This can occur by placing materials at businesses, libraries, township/city/village halls and community festivals and events, An example would be to place information on reducing fertilizer use at a store that sells fertilizer.

### **Plan Administration and Implementation**

An information and education implementation strategy is laid out for the Black and Paw Paw River Watersheds in the table found at the end of this report. This table lists specific tasks or activities, a potential lead agency and partners, timeframe, milestones and costs to educate target audiences for each watershed issue.

### **Roles and Responsibilities**

The Southwest Michigan Planning Commission and the Van Buren Conservation District will continue to oversee the implementation of the Information and Education Plan as well as make adjustments to the plan when necessary. An Information & Education committee will meet as needed to advise on educational efforts.

There are efforts underway to establish a non-profit organization called the Two Rivers Coalition to implement the watershed plans for the Black and Paw Paw River Watersheds. Once this group is

established, it may be most appropriate for this organization to oversee the implementation of the I&E Plan and convene the I&E committee.

### **Existing Efforts**

It is important to understand current education efforts being offered or resources that are available for use or adaptation in the Paw Paw and Black River Watersheds. In some cases, existing efforts may need additional advertisement or updating to more effectively transmit their intended message. A few existing efforts that could be supplemented or utilized in the Paw Paw and Black River Watersheds are described below.

MSU Extension sponsors a Citizen Planner Course each year in Southwest Michigan. The target audiences for this course are municipal and planning officials as well as citizens. Topics presented during each course include various land use planning topics and techniques.

The Stewardship Network, Sarett Nature Center, Conservation Districts, Southwest Michigan Planning Commission, MSUE and lake associations periodically host educational workshops related to watershed and water quality topics.

The Southwest Michigan Planning Commission provides educational resources about stormwater and water quality to Berrien and Cass County Phase II communities. These resources are available on the Internet at <a href="http://www.swmpc.org/pep\_materials.asp">www.swmpc.org/pep\_materials.asp</a> and could easily be adapted for use in the Black and Paw Paw River Watersheds.

The St. Joseph River Basin has produced a DVD about septic systems that could be distributed in the Black and Paw Paw River Watersheds.

The Southeast Michigan Council of Governments is facilitating a committee to develop a Statewide Low Impact Development manual, which will be extremely useful for educating and implementing LID.

# **Priorities**

Project priorities will be established to direct resources to the areas that will gain the most benefit from the designated outreach activity. These priorities should be re-evaluated over time by the Education & Outreach sub-committee and changed as necessary.

### Highest priority activities include:

- Activities that promote or build on existing efforts and expand partnerships with neighboring watershed projects, municipalities, conservation organizations and other entities.
- Activities that promote general awareness and understanding of watershed concepts and project goals.
- Activities that leverage external funding from local, state or federal sources.
- Activities that lead to actions (especially those in the watershed management plan), which help to improve and/or protect water quality.

### **Evaluation**

Ultimately, evaluation should show if water quality is being improved or protected in the watershed due to education efforts being implemented. Since watersheds are dynamic systems, this can be difficult to accomplish. For the education efforts, one level of evaluation is documenting a change in knowledge or increase in awareness and participation. Measures and data collection for this level can take place in three specific ways:

1. A large-scale social survey effort to understand individual watershed awareness and behaviors impacting water quality.

2. A pre- and post-test of individuals at workshops focused on specific water quality issues in the PPRW.

3. The tracking of involvement in a local watershed group or increases in attendance at water quality workshops or other events.

| Issue     | Priority Target<br>Audience* | Activity                                                                                                                         | Potential lead<br>agency | Potential partners                              | Timeline**<br>(milestone)                   | Evaluation                                                                         | Costs                                                                                 |
|-----------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------------------------|---------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
|           |                              | Produce and distribute 3- 4 public service<br>announcements/press releases per year                                              | VBCD, BCD                | SWMPC, MSUE,<br>TRC                             | current - on-going<br>(3-4 PSAs/year)       | number of news articles                                                            | 5 hours staff time/press release                                                      |
|           |                              | Maintain a website that makes watershed information easily available to the public                                               | TRC                      | VBCD, SWMPC                                     | current - on-going                          | website traffic - number of<br>hits monthly                                        | \$20 per month hosting<br>fees + 20 hours staff<br>time/month                         |
|           | All                          | Develop 4 videos for website (stories about<br>watershed protection/management - Farmer,<br>Landowner, Municipal Official, etc.) | TRC                      | SWMLC, TNC,<br>VBCD, SWMPC                      | short-term<br>(2 videos/ year)              | website traffic - number of<br>hits monthly                                        | \$600/video for production<br>100 hours staff time/video                              |
| Watershed |                              | Create a display and participate in 2-3<br>community festivals/year                                                              | TRC                      | VBCD, SWMPC                                     | current - on-going<br>(2-3 festivals/ year) | number of participants                                                             | \$200 per event + 30 hours<br>staff time to develop                                   |
| awareness |                              | Develop and install "Entering the watershed"<br>signs at watershed boundaries                                                    | Road Commission          | TRC                                             | long-term<br>(5 signs/ year)                | number of installed signs                                                          | \$200 per sign for printing<br>and installation                                       |
|           |                              | Develop a student stream monitoring program                                                                                      | VBISD                    | VBCD, Math &<br>Science Center<br>(Allegan ISD) | long-term<br>(1 school/ year)               | number of schools participating in program                                         | \$1500 for program<br>materials (nets, waders,<br>etc) + 20 hours/month<br>staff time |
|           | Kids/ Students               | Plan and offer 1 teacher training workshop/year                                                                                  | VBCD                     | VBISD                                           | long-term<br>(1 training/ year)             | attendance at workshop and<br>incorporation of watershed<br>topics into curriculum | \$200/workshop + 40 hours<br>staff time/year                                          |
|           |                              | Distribute curriculum materials on watersheds<br>and water quality to teachers (use materials<br>from Great Lakes Alliance)      | VBISD                    | VBCD, Math &<br>Science Center                  | medium-term<br>(4 schools/ year)            | number of schools<br>incorporating curriculum<br>materials                         | \$200/school + 60 hours<br>staff time                                                 |

| Issue                                  | Priority Target<br>Audience*  | Activity                                                                                                                                                                                                    | Potential lead<br>agency | Potential partners                         | Timeline**<br>(milestone)                                           | Evaluation                                                                                                        | Costs                                                              |
|----------------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| Land Use<br>Change                     | Drain                         | Meet one-on-one with drain commissioners to<br>discuss alternative drain maintenance methods<br>and ditch naturalization techniques and<br>stormwater standards/ordinance                                   | VBCD, SWMPC              | TRC, Drain<br>Commissioner                 | medium-term<br>(3<br>commissioners/year<br>)                        | miles of County Drains<br>converted and<br>improvements in<br>stormwater standards                                | 80 hours staff time                                                |
| Change                                 | Commission                    | Promote trainings being offered that relate to<br>drain maintenance and construction methods<br>that protect water quality                                                                                  | TRC                      | Drain<br>Commissioner,<br>VBCD, SWMPC      | short-term<br>(1 training/ year)                                    | improvements in drain<br>maintenance and<br>construction practices,<br>reduced sediment                           | 5 hours staff time/training                                        |
|                                        |                               | Produce and distribute brochures/flyers/fact<br>sheets to farmers about best management<br>practices, cost share programs, wetland<br>protection/restoration opportunities                                  | VBCD                     | MSUE, Drain<br>Commissioner,<br>VBCD, NRCS | short-term<br>(2 printed<br>pieces/year)                            | number of practices<br>installed, amount of Farm<br>Bill \$ spent in the<br>watershed, reduction in<br>pollutants | \$1500 per direct mailing +<br>30 hours staff<br>time/distribution |
| Agricultural<br>runoff and<br>Land Use | Farmers                       | Plan and host at least 1 workshop per year and<br>host a tour/field site visit at least every 2-3 years<br>addressing agricultural runoff, best management<br>practices, wetland protection and restoration | VBCD, BCD, ACD           | MSUE, NRCS                                 | current - on-going<br>(1 workshop/ year<br>and 1 tour/2-3<br>years) | number of attendees and<br>evaluations completed                                                                  | \$200-\$600/workshop + 80<br>hours/year                            |
| Change                                 |                               | Develop and provide 1 newsletter article per<br>year to Farm Bureau or other agencies on<br>agricultural BMPs and wetland<br>restoration/protection                                                         | MSUE, VBCD               | NRCS                                       | short-term<br>(1 article/ year)                                     | number of readers<br>(circulation of publication)                                                                 | 10 hours/year                                                      |
|                                        |                               | Contact farmers in TMDL areas on a one-on-<br>one basis to discuss best management practices<br>and wetland restoration and distribute printed<br>materials                                                 | VBCD                     | NRCS, MSUE,<br>Drain<br>Commissioner       | medium-term<br>(15-20 farmers/<br>year)                             | number of practices<br>installed, reduction of<br>pollutants                                                      | \$400 printing + 400 hours<br>staff time                           |
| Land use<br>change,<br>stormwater      | Government<br>units-officials | Promote trainings being offered on water quality, land use planning and LID                                                                                                                                 | TRC                      | VBCD, MSUE,<br>SWMPC                       | current - on-going<br>(2 trainings/ year)                           | increase in use of LID<br>techniques                                                                              | 5 hours staff time/training                                        |

| Issue                                                                                | Priority Target<br>Audience*          | Activity                                                                                                                                                                                                                                           | Potential lead<br>agency | Potential partners                                        | Timeline**<br>(milestone)                                  | Evaluation                                                     | Costs                                                 |
|--------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------|
| runoff and<br>natural<br>resource<br>management<br>and<br>preservation               |                                       | Promote the adoption of a county-wide<br>phosphorus ban in Van Buren and Berrien<br>Counties and assist with educational efforts in<br>Berrien, Van Buren and Allegan counties                                                                     | TRC                      | Lake Assoc, Drain<br>Commissioner,<br>VBCD, SWMPC,<br>ACD | current - on-going<br>(1 adoption/ year)                   | adoption of ordinance                                          | \$1000 (printing materials)<br>+ 120 hours staff time |
|                                                                                      |                                       | Plan and host at least 1 workshop or summit per<br>year on land use and water quality related issues<br>and to share successes in watershed protection<br>efforts and host a watershed tour every 2-3<br>years focusing on low impact development. | SWMPC                    | MSUE, VBCD,<br>Planning<br>Commission                     | long-term<br>(1 workshop/ year<br>and 1 tour/2-3<br>years) | incorporation of watershed<br>topics into land use<br>planning | \$600/year + 80 hours staff<br>time                   |
|                                                                                      |                                       | Produce and distribute a Watershed<br>Management Plan user guide                                                                                                                                                                                   | TRC                      | VBCD, SWMPC                                               | short-term<br>(1 user guide/ year)                         | number of guides<br>distributed or requested                   | 200 hours staff time<br>+\$800 printing               |
|                                                                                      |                                       | Produce and distribute brochures/flyers/fact<br>sheets on land use and water quality, low impact<br>development, smart growth, green infrastructure<br>etc.                                                                                        | SWMPC                    | VBCD, MSUE,<br>TRC, SWMLC                                 | current - on-going<br>(2 printed<br>pieces/year)           | increased use of LID<br>practices                              | \$800/printing & postage<br>80 staff hours/item       |
|                                                                                      |                                       | Work one-on-one with planning commissions to<br>improve plans and zoning ordinances for water<br>quality protection ordinances, smart growth and<br>low impact development and green<br>infrastructure                                             | SWMPC                    | VBCD, TRC.                                                | current - on-going<br>(3<br>municipalities/year)           | number of improvements to plans and ordinances                 | 200 hours staff<br>time/municipality                  |
| Land use<br>change,<br>stormwater<br>runoff and<br>natural<br>resource<br>management | Developers/<br>builders/<br>engineers | Develop and distribute newsletter articles and<br>brochures, flyers and fact sheets on low impact<br>development to SW Michigan realtor and<br>builders associations                                                                               | SWMPC                    | SWMHBA,<br>SWMAR                                          | medium-term<br>(1 printed<br>piece/year)                   | increased use of LID<br>practices                              | 30 hours staff time/item                              |
| and<br>preservation                                                                  |                                       | Plan and host a watershed tour to showcase LID<br>every 2-3 years                                                                                                                                                                                  | TRC                      | VBCD, MSUE,<br>SWMPC                                      | medium-term<br>(1 tour/2-3 years)                          | tour attendance and<br>evaluations                             | 100 hours/event +<br>\$50/person                      |

| Issue                                                                                | Priority Target<br>Audience*  | Activity                                                                                                                                                                         | Potential lead<br>agency                | Potential partners                              | Timeline**<br>(milestone)                        | Evaluation                                                      | Costs                                                    |
|--------------------------------------------------------------------------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------|
|                                                                                      |                               | Promote statewide LID manual and trainings offered                                                                                                                               | SWMPC                                   | SWMHBA /<br>SWMAR                               | short-term<br>(1 training/ year)                 | attendance at trainings                                         | 80 hours staff time                                      |
|                                                                                      |                               | Print and distribute fact sheets from SWMPC's<br>stormwater campaign at<br>www.swmpc.org/water.asp                                                                               | TRC                                     | SWMPC, VBCD                                     | current - on-going<br>(50 fact sheets/year)      | number distributed                                              | \$300 printing/postage<br>20 hours staff time            |
|                                                                                      |                               | Install storm drain markers and place door knob<br>hangers to educate residents about stormwater<br>runoff                                                                       | VBCD, BCD                               | Lake Associations,<br>TRC                       | current - on-going<br>(2<br>municipalities/year) | number installed                                                | 40 hours staff time to coordinate volunteers             |
| Stormwater<br>runoff and<br>natural<br>resource<br>management<br>and<br>preservation | Property owners               | Produce a direct mailing on land protection<br>options - focus on property owners in high<br>priority protection areas and high priority<br>wetland protection/restoration areas | SWMLC                                   | Land Preservation<br>Board, VBCD,<br>BCD, SWMPC | short-term<br>(1mailing/ 2-3<br>years)           | increased landowner<br>interest in land preservation<br>options | \$1000/printing and<br>postage + 100 hours staff<br>time |
|                                                                                      |                               | Host workshops/tours for property owners in high priority protection areas                                                                                                       | SWMLC                                   | VBCD, BCD, TRC,<br>SWMPC                        | short-term<br>(1 tour/ 2-3 years)                | attendance and evaluations<br>completed                         | \$100-\$500/workshop + 80<br>staff hours                 |
|                                                                                      |                               | Distribute printed materials on what can be<br>done to protect water quality and on land<br>protection options for private landowners in tax<br>or utility bills                 | County and<br>Townships                 | SWMLC, VBCD,<br>BCD, SWMLC,<br>TRC              | long-term<br>(1 mailing/ year)                   | number of mailings                                              | \$300 printing/postage<br>40 hours staff time            |
| Stormwater<br>runoff                                                                 | Government<br>units-employees | Promote trainings on municipal operations<br>(including road maintenance and construction)<br>and best management practices to protect water<br>quality                          | Drain<br>Commissioner<br>Municipalities | Road Commission,<br>VBCD, SWMPC                 | medium-term<br>(1 training/ year)                | number of governmental<br>employees attending<br>trainings      | 20 hours/training<br>opportunity                         |

| Issue                                                    | Priority Target<br>Audience* | Activity                                                                                                                                        | Potential lead<br>agency           | Potential partners                                            | Timeline**<br>(milestone)                 | Evaluation                                                     | Costs                                                            |
|----------------------------------------------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|---------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------|
|                                                          |                              | Distribute brochures/flyers/fact sheets about<br>municipal operations and road construction and<br>maintenance best practices for water quality | Road Commission,<br>Municipalities | SWMPC                                                         | medium-term<br>(1 printed<br>piece/year)  | number adopting watershed<br>friendly practices                | \$150/item printing and<br>postage + 20 hours staff<br>time/item |
| Stormwater                                               |                              | Give presentations at local business gatherings<br>about what businesses can do to protect water<br>quality                                     | VBCD                               | MSUE, Drain<br>Commissioner                                   | medium-term<br>(1 presentation/<br>year)  | number of business<br>adopting watershed<br>friendly practices | 40 hours staff time/presentation                                 |
| runoff                                                   | Businesses                   | Distribute brochures/flyers/fact sheets about<br>business operations best practices for water<br>quality - focus on lawn care companies         | MSUE                               | VBCD                                                          | medium-term<br>(1 distribution/ year      | number of business<br>adopting watershed<br>friendly practices | \$200-\$500<br>printing/postage<br>30 hours staff time/item      |
|                                                          |                              | Develop and install kiosks at parks along the rivers about water quality and natural features                                                   | Municipalities                     | BSHWTA, VBCD,<br>SWMPC, Sarett<br>Nature Center, TRC          | medium-term<br>(1 kiosk/ 2 years)         | number of kiosks installed                                     | \$1,000/kiosk + 120 hours<br>staff time/kiosk                    |
| Natural<br>resource<br>management<br>and<br>preservation | Recreation<br>groups/users   | Develop water trails, public access sites and<br>walking trails along the river                                                                 | Municipalities                     | BSHWTA, Sarett<br>Nature Center,<br>SWMPC, Road<br>Commission | long-term<br>(1access site/ 2-3<br>years) | number of access sites; use<br>of trails                       | \$100/mile for water trail<br>\$1,000-\$8,000/access site        |
|                                                          |                              | Develop and distribute 1 newsletter article per<br>year for recreation groups                                                                   | VBCD                               | BSHWTA, Lake<br>Associations<br>SWMLC                         | medium-term<br>(1 article/ year)          | number of readers<br>(circulation of publication)              | 10 hours staff time/article                                      |
| Septage waste                                            | Riparian<br>property owners  | Develop 1 newsletter article per year for lake<br>associations to utilize in their newsletters                                                  | VBCD                               | Health Dept,<br>MSUE, SWMPC                                   | medium-term<br>(1 article/ year)          | number of readers<br>(circulation of publication)              | 10 hours staff time/article                                      |

| Issue         | Priority Target<br>Audience*  | Activity                                                                                                                                                  | Potential lead<br>agency | Potential partners                         | Timeline**<br>(milestone)                        | Evaluation                                                            | Costs                                                             |
|---------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------------------------|--------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------|
|               |                               | Develop and work with lake associations to<br>distribute door knob hangers about septic<br>system maintenance                                             | Lake Assoc.              | VBCD, TRC                                  | medium-term<br>(2 lakes/year)                    | number of households in<br>distribution area                          | \$0.50each printing + 100<br>hours staff time/lake<br>association |
|               |                               | Encourage lake association members to meet<br>with lake owners on a one-on-one basis to<br>discuss septic system maintenance                              | Lake Assoc.              | VBCD, MSUE                                 | medium-term<br>(2 lakes/year)                    | improved septic<br>maintenance and reduced<br>pollutants              | 3 hours/household                                                 |
|               |                               | Obtain and distribute a video on septic systems<br>and water quality to Lake Associations (video<br>available from St. Joseph River Basin<br>Commission)  | Lake Assoc.              | SWMPC, St Joe<br>River Basin<br>Commission | medium-term<br>(3 lakes/year)                    | improved septic<br>maintenance and reduced<br>pollutants              | 100 hours staff time                                              |
|               | Government<br>unit-employees  | Promote trainings about municipal sewer<br>infrastructure planning and management                                                                         | TRC                      | VBCD, SWMPC,<br>Health Dept.               | medium-term<br>(1 training/ year)                | number of municipal<br>officials and employees<br>attending trainings | 10 hours/training                                                 |
|               |                               | Develop and distribute brochures/flyers/fact<br>sheets about the impacts of failing septic<br>systems and what local governments can do                   | VBCD                     | MSUE, Health<br>Dept, TRC                  | medium-term<br>(1distribution/ 4<br>years)       | increased number of septic<br>related ordinances                      | \$400 printing/postage<br>80 hours staff time                     |
| Septage waste | Government<br>units-officials | Obtain and distribute a video on septic systems<br>and water quality to governmental units (video<br>available from St. Joseph River Basin<br>Commission) | SWMPC                    | St. Joe Basin<br>Commission,<br>VBCD, MSUE | medium-term<br>(5 governmental<br>units/year)    | number of municipalities<br>receiving video                           | 100 hours staff time                                              |
|               |                               | Work one-on-one with planning commissions to<br>improve plans and zoning ordinances relating to<br>septic systems                                         | SWMPC                    | VBCD, MSUE                                 | current - on-going<br>(3<br>municipalities/year) | increased number of septic<br>related ordinances                      | 80 hours/municipality                                             |

\*Note: Primary audiences are listed; there may be additional audiences that could benefit as well \*\* short-term - within one year; medium-term - within 2-3 years; long-term - within 4-6 years

| Acronyms                                                                          |
|-----------------------------------------------------------------------------------|
| ACD: Allegan Conservation District                                                |
| BCD: Berrien Conservation District                                                |
| BSHWTA" Bangor-South Haven Heritage Water Trail Association                       |
| MSUE: Michigan State University Extension                                         |
| NRCS: Natural Resources Conservation Service                                      |
| SWMAR: Southwest Michigan Association of Realtors                                 |
| SWMHBA: Southwest Michigan Home Builder's Association                             |
| SWMLC: Southwest Michigan Land Conservancy                                        |
| SWMPC: Southwest Michigan Planning Commission                                     |
| TNC: The Nature Conservancy                                                       |
| TRC: Two Rivers Coalition: An Alliance for the Black and Paw Paw River Watersheds |
| VBCD: Van Buren Conservation District                                             |
| VBISD: Van Buren Intermediate School District                                     |

# **Appendix R: Tasks for Watershed Management Plan Objectives**

| Goals                                                                                                                                                                                                          | Objectives                                                                                                      | Tasks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Improve water quality and<br>habitat for fish, indigenous aquatic<br>life and wildlife in the watershed<br>by reducing the amount of<br>nutrients, sediment, and chemical<br>pollutants entering the system | 1 A. Stabilize priority streambank erosion sites through the installation of corrective measures                | <ol> <li>Work with engineering firm to design appropriate stabilization<br/>techniques (soil lifts, regrading, cross vanes, coir logs, native<br/>vegetative buffers)</li> <li>Acquire funding from local sources</li> <li>Acquire necessary permits and permissions</li> <li>Coordinate process for stabilizing streambank</li> <li>Identify additional sites</li> </ol>                                                                                                                                                                                                       |
|                                                                                                                                                                                                                | 1 B. Establish a road/stream crossing<br>improvement program to correct identified<br>problems                  | <ol> <li>Work with road commissions to initiate this program</li> <li>Distribute list of problem areas to road commissions</li> <li>Develop a plan for road/culvert/bridge issues</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                | 1 C. Work to limit or control direct livestock access to the river and tributaries                              | <ol> <li>Locate sources of funding for improving livestock access to water</li> <li>Contact livestock farmers with access issues</li> <li>Coordinate process for improving livestock access at 8 sites in the watershed</li> </ol>                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                | 1 D. Install corrective measures to reduce runoff at agricultural sites of concern                              | <ol> <li>Locate sources of funding for reducing agricultural runoff</li> <li>Contact farmers in sites of concern</li> <li>Coordinate process</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                | 1 E. Encourage farmers to participate in the<br>Michigan Agriculture Environmental Assurance<br>Program (MAEAP) | <ol> <li>Identify facilities by their commodity (Livestock system, Farmstead<br/>system, Cropping system)</li> <li>Contact producers to initiate progressive planning process for<br/>MAEAP verification</li> </ol>                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                | 1 F. Reestablish greenbelts/conservation buffers at sites in critical areas                                     | <ol> <li>Contact riparian landowners in urban/residential critical areas</li> <li>Provide education</li> <li>Identify funding sources</li> <li>Work with landowners and municipalities to install</li> </ol>                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                | 1 G. Work with communities to reduce polluted stormwater entering local waterways                               | <ol> <li>Determine which municipalities know locations of storm drain<br/>inlets and outlets, and which municipalities have these mapped</li> <li>Map storm drain system, including inlets and outlets; map<br/>surrounding land use of inlets and rank for risk</li> <li>Work with communities (as well as developers and businesses) to<br/>use bioinfiltration and other on-site stormwater treatment methods</li> <li>Locate and fix illicit connections</li> <li>Replace inlet covers with ones with imprinted "Don't dump – drains<br/>to stream" message (see</li> </ol> |

|                                                         |                                                                                                                                                                                                                  | http://www.ejiw.com/products.phtml?catid=36)<br>6. Coordinate with goal 7                                                                                                                                                                                                                                                                  |
|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                         | 1 H. Identify and improve failing septic systems                                                                                                                                                                 | <ol> <li>Work with Health Departments to identify failing septic systems</li> <li>Subsidize septic system inspections for waterfront property owners</li> <li>Coordinate with goal 7</li> </ol>                                                                                                                                            |
|                                                         | 1 I. Encourage the creation of local sanitary sewer systems on densely populated inland lakes                                                                                                                    | <ol> <li>Contact lake associations to determine level of interest/ feasibility</li> <li>Contact municipalities to determine level of interest/ feasibility</li> <li>Provide education</li> </ol>                                                                                                                                           |
|                                                         | 2 A. Perform water quality monitoring for<br>potential pollutants to monitor the current quality<br>of the river as well as to monitor changes over<br>time                                                      | <ol> <li>Coordinate with agencies to perform studies (road-stream crossing<br/>surveys, macroinvertebrate studies, water quality monitoring, etc.)</li> <li>Devise quality assurance project plans (QAPP)</li> <li>Contact landowners to obtain permission to access river</li> <li>Train volunteers</li> <li>Carry out studies</li> </ol> |
| 2. Continue/increase watershed monitoring efforts and   | 2 B. Continue monitoring stream bank erosion                                                                                                                                                                     | <ol> <li>Devise quality assurance project plan</li> <li>Contact landowners to obtain permission to access river</li> <li>Train volunteers</li> <li>Carry out study</li> </ol>                                                                                                                                                              |
| stewardship                                             | 2 C. Continue geomorphologic assessments of river                                                                                                                                                                | <ol> <li>Work with Michigan Department of Natural Resources to develop<br/>assessment plan</li> <li>Assist Michigan Department of Natural Resources in carrying out<br/>assessments</li> </ol>                                                                                                                                             |
|                                                         | 2 D. Perform hydraulic / hydrologic analysis of river                                                                                                                                                            | <ol> <li>Work with Michigan Department of Environmental Quality and<br/>Michigan Department of Natural Resources to develop assessment<br/>plan</li> <li>Research hiring a contractor to complete work</li> </ol>                                                                                                                          |
| 3. Improve the hydrology and<br>morphology of the river | 3 A. Reduce volume and rate of runoff using<br>recommendations from hydrologic study (see<br>Appendix N). BMPs include wetland creation,<br>detention, bioretention, buffer strips and<br>infiltration practices | <ol> <li>Use hydrology study (Appendix N) to identify volume and rate<br/>reduction targets for each subwatershed</li> <li>Identify properties and work with landowners to implement BMPs</li> <li>Locate funding for BMPs</li> <li>Design/install BMPs</li> </ol>                                                                         |
|                                                         | 3 B. Restore river channel to stable condition                                                                                                                                                                   | <ol> <li>Identify channelized and unstable stream reaches</li> <li>Determine stable stream configuration through local reference<br/>reaches, regional reference curves, or similar process</li> <li>Prepare a stable channel design for the identified reaches</li> <li>Implement the designs</li> </ol>                                  |

|                                                                                                                                           | 4 A. Assess the current adequacy level of local community planning and zoning controls                                                               | <ol> <li>Contact municipalities and request participation in review process</li> <li>Compare existing controls against standards</li> <li>Perform build-out analysis</li> <li>Identify areas needing improvement based on assessment results<br/>and local potential for problems</li> <li>Notify communities of these results</li> </ol>                                                                                                                                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                           | 4 B. Develop model ordinances and language for<br>adoption into existing master plans and zoning<br>ordinances                                       | <ol> <li>Obtain/create ordinance language and master plans that address<br/>identified problems</li> <li>Conduct an alignment check with County/State planning<br/>requirements</li> <li>Verify that proposed examples will address known problems</li> <li>Obtain necessary support and permission</li> <li>Prepare standard ordinances and recommended language in an<br/>organized form that is easily transmittable (i.e. by e-mail)</li> </ol>                                                                                                                |
| 4. Provide long term protection of<br>the Black River Watershed<br>through improved local land use<br>policies and conservation practices | 4 C. Assist local communities in updating master<br>plans and/or adopting ordinances or "smart<br>growth" techniques that will protect water quality | <ol> <li>Prepare "how to" outlines to use as examples of how changes<br/>should take place</li> <li>Prepare examples that will demonstrate benefits to local<br/>communities</li> <li>Conduct workshops for local community leaders</li> <li>Identify grants and other funding sources for local communities</li> <li>Provide assistance to local communities with grant applications</li> <li>Sponsor workshops and training sessions to increase local<br/>understanding of regulations</li> <li>Assist local communities with adoption process</li> </ol>       |
|                                                                                                                                           | 4 D. Permanently protect identified sensitive areas<br>through conservation easements, purchase of<br>development rights, and land purchases         | <ol> <li>Perform GIS-based natural resource assessment to identify and<br/>assess sensitive areas</li> <li>Plan and prioritize sites for protection</li> <li>Contact landowners in sensitive areas (headwaters, wetlands, and<br/>riparian zone)</li> <li>Hold workshops on different methods of land protection</li> <li>Obtain commitment from landowners to protect land</li> <li>Work with local land conservancy to coordinate projects</li> <li>Coordinate with municipalities to include information in master<br/>plans and site review process</li> </ol> |
|                                                                                                                                           | 4 E. Support efforts to protect prime farmland from development                                                                                      | <ol> <li>Develop map/model of high priority areas for protection</li> <li>Work with Allegan and Van Buren County Purchase of<br/>Development Rights (PDR) programs</li> <li>Provide education on the PDR programs</li> </ol>                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                           | 4 F. Promote Low Impact Development (LID) techniques                                                                                                 | 1. Work with Southwest Michigan Planning Commission to develop<br>LID newsletter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

|                                                                                                          |                                                                                                                                       | 2. Present 1 workshop per year for three years                                                                                                                                                                                                                     |
|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5. Improve the navigability of the<br>Black River for canoes, kayaks,                                    | 5 A. Remove or cut through downed trees that<br>inhibit navigation by canoes and kayaks and<br>increase bank erosion                  | <ol> <li>Locate snags that are impassable by canoe/kayak</li> <li>Train volunteers on proper methodology for cutting through snags<br/>based on woody debris best management practices</li> <li>Contact riparian landowners</li> </ol>                             |
| and other self-propelled<br>watercraft, by reducing<br>sedimentation and reducing excess<br>woody debris | Stabilize priority streambank erosion sites through<br>the installation of corrective measures (see<br>objective 1 A)                 | [see tasks for objective 1 A]                                                                                                                                                                                                                                      |
| woody debris                                                                                             | Establish a road/stream crossing improvement<br>program to correct identified problems (see<br>objective 1 B)                         | [see tasks for objective 1 B]                                                                                                                                                                                                                                      |
|                                                                                                          | Work to limit or control direct livestock access to<br>the river and tributaries (see objective 1 C)                                  | [see tasks for objective 1 C]                                                                                                                                                                                                                                      |
| 6. Enhance recreational access                                                                           | 6 A. Increase the number of legal access sites                                                                                        | <ol> <li>Work with local governments to locate potential legal access points</li> <li>Assist in design of access points to minimize river sedimentation</li> </ol>                                                                                                 |
| 6. Enhance recreational access<br>sites to prevent the degradation of<br>water quality                   | 6 B. Provide educational kiosks and signage at launch sites that educate people about the watershed and good river etiquette          | <ol> <li>Work with Bangor/South Haven Heritage Trail Association and<br/>lake associations</li> <li>Locate sites for kiosks and obtain permission from landowners</li> <li>Develop language and signs for kiosks</li> </ol>                                        |
| 7. Increase knowledge and participation in programs                                                      | 7 A. Hire staff to implement watershed<br>management plan, including a project manager and<br>a land use planner                      | <ol> <li>Identify sources of funding</li> <li>Develop job description</li> <li>Interview and hire staff</li> </ol>                                                                                                                                                 |
| regarding nonpoint source<br>pollution and means of prevention                                           | 7 B. Implement Information & Education Plan<br>(see Appendix Q)                                                                       | (see Appendix Q)                                                                                                                                                                                                                                                   |
| 8. Prevent or reduce the introduction and spread of invasive species                                     | 8 A. Establish or work with existing invasive<br>species control programs to prevent the spread of<br>exotic species in the watershed | <ol> <li>Research existing invasive species control programs</li> <li>Work with coordinating agencies to develop or support invasive<br/>species control programs</li> <li>Create educational programs and materials (coordinate with I&amp;E<br/>Plan)</li> </ol> |

**Appendix S: Phosphorus Sampling in the Great Bear Lake Watershed** 

# Phosphorus Sampling in the Great Bear Lake Watershed, Van Buren County, MI

### Final Report 4/30/09



Prepared by Erin Fuller, Van Buren Conservation District Black River Watershed Implementation Project Tracking # 2005-0108 1035 E. Michigan Avenue Paw Paw, MI 49079

# Table of Contents

| Acknowledgements       2         Introduction       3         Methods       3         Study Sites       3         Sample/data collection and analysis procedures       4         Quality Control Requirements       4         Results       5         Site #1: Mill Lake Drain @ 37 <sup>th</sup> St.       5         Site #2: Road ditch @ 37 <sup>th</sup> St.       5         Site #2: Road ditch @ 37 <sup>th</sup> St.       5         Site #3: Mill Lake Drain @ CR 388       5         Site #4: Munn Lake Drain @ CR 388       6         Site #5: Mill Lake Drain @ CR 388       6         Site #6: Remington & Powers Drain @ CR 388       7         Site #7: Haven Drain @ 41 <sup>st</sup> St.       7         Site #8: Haven Drain @ 180omingdale sewage lagoons       7         Site #10: Great Bear Lake Drain @ 46 ½ St.       8         Discussion       9         References       10         Appendix A: Site Map       11         Appendix R: Site Map of Results       12         Appendix C: Phosphorus Data Power Analysis       14 | Table of Contents                                                    | 1  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----|
| Methods       3         Study Sites       3         Sample/data collection and analysis procedures       4         Quality Control Requirements       4         Results       5         Site #1: Mill Lake Drain @ 37 <sup>th</sup> St.       5         Site #2: Road ditch @ 37 <sup>th</sup> St.       5         Site #2: Road ditch @ 37 <sup>th</sup> St.       5         Site #3: Mill Lake Drain @ CR 388       5         Site #4: Munn Lake Drain @ CR 388       6         Site #5: Mill Lake Drain (just upstream of Remington & Powers Drain)       6         Site #6: Remington & Powers Drain @ CR 388       7         Site #7: Haven Drain @ 41 <sup>st</sup> St.       7         Site #8: Haven Drain @ Bloomingdale sewage lagoons       7         Site #10: Great Bear Lake Drain @ 46 ½ St.       8         Discussion       9         References       10         Appendix A: Site Map       11         Appendix B: May of Results       12                                                                                             | Acknowledgements                                                     | 2  |
| Study Sites       3         Sample/data collection and analysis procedures       4         Quality Control Requirements       4         Results       5         Site #1: Mill Lake Drain @ 37 <sup>th</sup> St.       5         Site #2: Road ditch @ 37 <sup>th</sup> St.       5         Site #3: Mill Lake Drain @ CR 388       5         Site #4: Munn Lake Drain @ CR 388       6         Site #5: Mill Lake Drain @ CR 388       6         Site #5: Mill Lake Drain @ CR 388       7         Site #6: Remington & Powers Drain @ CR 388       7         Site #6: Remington & Powers Drain @ CR 388       7         Site #7: Haven Drain @ 41 <sup>st</sup> St.       7         Site #8: Haven Drain @ Bloomingdale sewage lagoons       7         Site #9: Haven Drain @ 45 <sup>th</sup> St.       8         Site #10: Great Bear Lake Drain @ 46 <sup>1</sup> / <sub>2</sub> St.       8         Discussion       9         References       10         Appendix A: Site Map       11         Appendix B: Map of Results       12                | Introduction                                                         |    |
| Sample/data collection and analysis procedures.       4         Quality Control Requirements       4         Results.       5         Site #1: Mill Lake Drain @ 37 <sup>th</sup> St.       5         Site #2: Road ditch @ 37 <sup>th</sup> St.       5         Site #3: Mill Lake Drain @ CR 388       5         Site #4: Munn Lake Drain @ CR 388       6         Site #5: Mill Lake Drain @ CR 388       6         Site #5: Mill Lake Drain @ CR 388       7         Site #6: Remington & Powers Drain @ CR 388       7         Site #6: Remington & Powers Drain @ CR 388       7         Site #7: Haven Drain @ 41 <sup>st</sup> St.       7         Site #8: Haven Drain @ Bloomingdale sewage lagoons       7         Site #9: Haven Drain @ 45 <sup>th</sup> St.       8         Site #10: Great Bear Lake Drain @ 46 ½ St.       8         Discussion       9         References       10         Appendix A: Site Map       11         Appendix B: Map of Results.       12                                                                   | Methods                                                              |    |
| Quality Control Requirements       4         Results       5         Site #1: Mill Lake Drain @ 37 <sup>th</sup> St.       5         Site #2: Road ditch @ 37 <sup>th</sup> St.       5         Site #3: Mill Lake Drain @ CR 388       5         Site #4: Munn Lake Drain @ CR 388       6         Site #5: Mill Lake Drain @ CR 388       6         Site #5: Mill Lake Drain @ CR 388       7         Site #6: Remington & Powers Drain @ CR 388       7         Site #6: Remington & Powers Drain @ CR 388       7         Site #7: Haven Drain @ 41 <sup>st</sup> St.       7         Site #8: Haven Drain @ Bloomingdale sewage lagoons       7         Site #9: Haven Drain @ 45 <sup>th</sup> St.       8         Site #10: Great Bear Lake Drain @ 46 ½ St.       8         Discussion       9         References       10         Appendix A: Site Map       11         Appendix B: Map of Results       12                                                                                                                                     |                                                                      |    |
| Quality Control Requirements       4         Results       5         Site #1: Mill Lake Drain @ 37 <sup>th</sup> St.       5         Site #2: Road ditch @ 37 <sup>th</sup> St.       5         Site #3: Mill Lake Drain @ CR 388       5         Site #4: Munn Lake Drain @ CR 388       6         Site #5: Mill Lake Drain @ CR 388       6         Site #5: Mill Lake Drain @ CR 388       7         Site #6: Remington & Powers Drain @ CR 388       7         Site #6: Remington & Powers Drain @ CR 388       7         Site #7: Haven Drain @ 41 <sup>st</sup> St.       7         Site #8: Haven Drain @ Bloomingdale sewage lagoons       7         Site #9: Haven Drain @ 45 <sup>th</sup> St.       8         Site #10: Great Bear Lake Drain @ 46 ½ St.       8         Discussion       9         References       10         Appendix A: Site Map       11         Appendix B: Map of Results       12                                                                                                                                     | Sample/data collection and analysis procedures                       |    |
| Site #1: Mill Lake Drain @ 37 <sup>th</sup> St.       5         Site #2: Road ditch @ 37 <sup>th</sup> St.       5         Site #3: Mill Lake Drain @ CR 388       5         Site #4: Munn Lake Drain @ CR 388       6         Site #5: Mill Lake Drain (just upstream of Remington & Powers Drain)       6         Site #6: Remington & Powers Drain @ CR 388       7         Site #7: Haven Drain @ 41 <sup>st</sup> St.       7         Site #8: Haven Drain @ Bloomingdale sewage lagoons       7         Site #9: Haven Drain @ 45 <sup>th</sup> St.       8         Site #10: Great Bear Lake Drain @ 46 ½ St.       8         Discussion       9         References       10         Appendix A: Site Map       11         Appendix B: Map of Results.       12                                                                                                                                                                                                                                                                                   |                                                                      |    |
| Site #2: Road ditch @ 37 <sup>th</sup> St.       5         Site #3: Mill Lake Drain @ CR 388       5         Site #4: Munn Lake Drain @ CR 388       6         Site #5: Mill Lake Drain (just upstream of Remington & Powers Drain)       6         Site #6: Remington & Powers Drain @ CR 388       7         Site #7: Haven Drain @ 41 <sup>st</sup> St.       7         Site #8: Haven Drain @ Bloomingdale sewage lagoons       7         Site #9: Haven Drain @ 45 <sup>th</sup> St.       8         Site #10: Great Bear Lake Drain @ 46 ½ St.       8         Discussion       9         References       10         Appendix A: Site Map       11         Appendix B: Map of Results.       12                                                                                                                                                                                                                                                                                                                                                   | Results                                                              | 5  |
| Site #3: Mill Lake Drain @ CR 388       5         Site #4: Munn Lake Drain @ CR 388       6         Site #5: Mill Lake Drain (just upstream of Remington & Powers Drain)       6         Site #6: Remington & Powers Drain @ CR 388       7         Site #7: Haven Drain @ 41 <sup>st</sup> St.       7         Site #8: Haven Drain @ Bloomingdale sewage lagoons       7         Site #9: Haven Drain @ 45 <sup>th</sup> St.       8         Site #10: Great Bear Lake Drain @ 46 ½ St.       8         Discussion       9         References       10         Appendix A: Site Map       11         Appendix B: Map of Results.       12                                                                                                                                                                                                                                                                                                                                                                                                              | Site #1: Mill Lake Drain @ 37 <sup>th</sup> St.                      | 5  |
| Site #3: Mill Lake Drain @ CR 388       5         Site #4: Munn Lake Drain @ CR 388       6         Site #5: Mill Lake Drain (just upstream of Remington & Powers Drain)       6         Site #6: Remington & Powers Drain @ CR 388       7         Site #7: Haven Drain @ 41 <sup>st</sup> St.       7         Site #8: Haven Drain @ Bloomingdale sewage lagoons       7         Site #9: Haven Drain @ 45 <sup>th</sup> St.       8         Site #10: Great Bear Lake Drain @ 46 ½ St.       8         Discussion       9         References       10         Appendix A: Site Map       11         Appendix B: Map of Results.       12                                                                                                                                                                                                                                                                                                                                                                                                              | Site #2: Road ditch @ 37 <sup>th</sup> St                            | 5  |
| Site #5: Mill Lake Drain (just upstream of Remington & Powers Drain)       6         Site #6: Remington & Powers Drain @ CR 388       7         Site #7: Haven Drain @ 41 <sup>st</sup> St.       7         Site #8: Haven Drain @ Bloomingdale sewage lagoons       7         Site #9: Haven Drain @ 45 <sup>th</sup> St.       8         Site #10: Great Bear Lake Drain @ 46 ½ St.       8         Discussion       9         References       10         Appendix A: Site Map       11         Appendix B: Map of Results.       12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                      |    |
| Site #6: Remington & Powers Drain @ CR 388       7         Site #7: Haven Drain @ 41 <sup>st</sup> St.       7         Site #8: Haven Drain @ Bloomingdale sewage lagoons       7         Site #9: Haven Drain @ 45 <sup>th</sup> St.       8         Site #10: Great Bear Lake Drain @ 46 ½ St.       8         Discussion       9         References       10         Appendix A: Site Map       11         Appendix B: Map of Results.       12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                      |    |
| Site #7: Haven Drain @ 41 <sup>st</sup> St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Site #5: Mill Lake Drain (just upstream of Remington & Powers Drain) | 6  |
| Site #8: Haven Drain @ Bloomingdale sewage lagoons       7         Site #9: Haven Drain @ 45 <sup>th</sup> St.       8         Site #10: Great Bear Lake Drain @ 46 ½ St.       8         Discussion       9         References       10         Appendix A: Site Map       11         Appendix B: Map of Results       12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Site #6: Remington & Powers Drain @ CR 388                           | 7  |
| Site #9: Haven Drain @ 45 <sup>th</sup> St.       8         Site #10: Great Bear Lake Drain @ 46 ½ St.       8         Discussion       9         References       10         Appendix A: Site Map       11         Appendix B: Map of Results       12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                      |    |
| Site #10: Great Bear Lake Drain @ 46 ½ St.       8         Discussion       9         References       10         Appendix A: Site Map       11         Appendix B: Map of Results       12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Site #8: Haven Drain @ Bloomingdale sewage lagoons                   | 7  |
| Discussion 9<br>References 10<br>Appendix A: Site Map 11<br>Appendix B: Map of Results 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      |    |
| References       10         Appendix A: Site Map       11         Appendix B: Map of Results       12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Site #10: Great Bear Lake Drain @ 46 1/2 St                          | 8  |
| Appendix A: Site Map                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Discussion                                                           | 9  |
| Appendix B: Map of Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | References                                                           | 10 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Appendix A: Site Map                                                 | 11 |
| Appendix C: Phosphorus Data Power Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Appendix B: Map of Results                                           | 12 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Appendix C: Phosphorus Data Power Analysis                           |    |

# Acknowledgements

The success of this project is due to the dedication of volunteer Tom Barczak, who collected all of the water samples. In addition, Chris Bauer and Joe Rathbun of the Michigan Department of Environmental Quality provided essential assistance throughout the entire course of the project. We also thank the Paw Paw Wastewater Treatment Plant for their dedication in analyzing the samples in the laboratory.

### Introduction

As part of the Black River Watershed Project, dry weather sampling was performed to collect and analyze water samples for total phosphorus and ortho phosphorus at ten locations in the Black River Watershed in Van Buren County. In this study, dry weather sampling required that all samples be taken when there had been less than ¼ inch of rain in the antecedent 48 hours. All sample sites were in the subwatershed that drains into Great Bear Lake in Bloomingdale and Columbia Townships. Phosphorus has been determined to be one of the critical issues in this watershed, but information as to the source and location of inputs is lacking. In addition to helping locate areas where phosphorus is entering the system, this study will provide a baseline against which to evaluate best management practice (BMP) effectiveness in the future. The project will add to existing water quality information contained in the Black River Watershed Management Plan and a total Maximum Daily Load for Phosphorus that has been prepared for Great Bear Lake.

Surface water grab samples were collected approximately weekly at nine locations upstream of Great Bear Lake and one location downstream of the lake, for a total of ten sample sites. One volunteer collected all samples, beginning on September 3, 2008 and ending on October 22, 2008 for a total of 8 sampling events.

The Black River Watershed Coordinator analyzed results and acted as project manager. Laboratory analyses were performed by a licensed operator at the Paw Paw Wastewater Treatment Plant.

### Methods

#### Study Sites

Ten locations were chosen for sampling, as shown below:

01: Mill Lake Drain @ 37th St. (upstream of culvert under 37th)

02: Road ditch @ 37<sup>th</sup> St. (ditch runs parallel to 37<sup>th</sup> St.; samples were collected upstream of where it meets Mill Lake Drain)

03: Mill Lake Drain @ CR 388 (just upstream of where Munn Lake Drain enters)

04: Munn Lake Drain @ CR 388 (upstream of culvert under CR 388)

05: Mill Lake Drain (just upstream of Remington & Powers Drain)

06: Remington & Powers Drain @ CR 388 (just upstream of the culvert under CR 388)

07: Haven Drain @ 41<sup>st</sup> St. (just upstream of culvert under 41<sup>st</sup> St.)

08: Haven Drain @ Bloomingdale sewage lagoons (upstream of culvert under access road)

09: Haven Drain @ 45<sup>th</sup> St. (upstream of culvert under 45<sup>th</sup> St.)

10: Great Bear Lake Drain @ 46 ½ St. (downstream of Great Bear Lake, upstream of culvert)

These locations were selected because they bracket areas of potential concern. Additionally, most sites are at road-stream crossings for ease of volunteer access. See Appendix A for a map of these locations.

#### Sample/data collection and analysis procedures

Surface water grab samples were collected using the following protocol:

- the person taking the sample entered the stream in such as way as to minimize disturbance of sediments
- the person taking the sample faced upstream while sampling and submerged the bottle
  approximately six inches below the water surface to avoid collecting film from the
  water surface.
- all samples were kept on ice or in a refrigerator until delivered to the lab.

Samples were analyzed using the standard analytical methods for total phosphorus and ortho phosphorus shown in Table 1.

| Parameter           | Method  | Detection<br>Limit | Sample<br>Volume<br>(mL) | Bottle<br>type    | Preservative | Hold time |
|---------------------|---------|--------------------|--------------------------|-------------------|--------------|-----------|
| Total<br>phosphorus | 4500-P* | .01 mg/L           | 500 mL                   | Plastic<br>(HDPE) | None         | 48 hours  |
| Ortho<br>phosphorus | 4500-P* | .01 mg/L           | 500 mL                   | Plastic<br>(HDPE) | None         | 48 hours  |

\*Standard Methods for the Examination of Water and Wastewater

After samples were analyzed, bottles were cleaned in the lab with Alconox Liqui-Nox phosphate free cleaner. In the field, each bottle was double rinsed with stream water prior to sample collection. Because sample collection bottles were reused, a field blank sample was collected using distilled water (once per sampling survey).

A unique number was assigned to each field sample collected. Sample identification included a site identifier, the date, sample type (investigative sample [I] or duplicate sample [D]. For example, the code 01-09/18/08 (I) refers to an investigative sample taken on September 18, 2008 at Mill Lake Drain @  $37^{\rm th}$  St. (the location 01).

Chain of custody forms were kept with the samples during transport and at the lab.

#### **Quality Control Requirements**

Laboratory instrument calibration: A standard and blank are run each time phosphorus is tested in the laboratory, at least three times per week. The Paw Paw Wastewater Treatment lab undergoes a NSI DMRQA Lab Performance Evaluation two times per year.

One field duplicate was collected and tested each week. The site at which a duplicate sample was taken was chosen randomly. The relative percent difference (RPD) for duplicate samples was recorded and stored with the rest of the data collected throughout the project.

# Results

Note: NA indicates no sample was taken at the site due to low/no water conditions.

| Date                       | Total Phosphorus (mg/L) | Ortho Phosphorus (mg/L) | % Ortho<br>Phosphorus |
|----------------------------|-------------------------|-------------------------|-----------------------|
| 9/2/2008                   | NA                      | NA                      | NA                    |
| 9/11/2008                  | 0.09                    | 0.09                    | 100.0%                |
| 9/18/2008                  | 0.03                    | 0.03                    | 100.0%                |
| 9/23/2008                  | 0.01                    | 0.01                    | 100.0%                |
| 9/29/2008                  | 0.02                    | 0.02                    | 100.0%                |
| 10/7/2008                  | 0.07                    | 0.05                    | 71.4%                 |
| 10/14/2008                 | 0.05                    | 0.05                    | 100.0%                |
| 10/22/2008                 | NA                      | NA                      | NA                    |
| Average                    | 0.045                   | 0.042                   | 95.2%                 |
| Standard Deviation (STDEV) | 0.031                   | 0.029                   | 0.117                 |
| Median                     | 0.040                   | 0.040                   | 100.0%                |

# Site #1: Mill Lake Drain @ 37th St.

# Site #2: Road ditch @ 37th St

| Date                       | Total Phosphorus (mg/L) | Ortho Phosphorus (mg/L) | % Ortho<br>Phosphorus |
|----------------------------|-------------------------|-------------------------|-----------------------|
| 9/2/2008                   | NA                      | NA                      | NA                    |
| 9/11/2008                  | 0.01                    | 0.01                    | 100.0%                |
| 9/18/2008                  | 0.07                    | 0.07                    | 100.0%                |
| 9/23/2008                  | 0.05                    | 0.05                    | 100.0%                |
| 9/29/2008                  | 0.07                    | 0.07                    | 100.0%                |
| 10/7/2008                  | 0.09                    | 0.05                    | 55.6%                 |
| 10/14/2008                 | 0.03                    | 0.03                    | 100.0%                |
| 10/22/2008                 | NA                      | NA                      | NA                    |
| Average                    | 0.053                   | 0.047                   | 92.6%                 |
| Standard Deviation (STDEV) | 0.029                   | 0.023                   | 0.181                 |
| Median                     | 0.060                   | 0.050                   | 100%                  |

# Site #3: Mill Lake Drain @ CR 388

| Date      | Total Phosphorus (mg/L) | Ortho Phosphorus (mg/L) | % Ortho<br>Phosphorus |
|-----------|-------------------------|-------------------------|-----------------------|
| 9/2/2008  | NA                      | NA                      | NA                    |
| 9/11/2008 | 0.07                    | 0.06                    | 85.7%                 |
| 9/18/2008 | 0.07                    | 0.07                    | 100.0%                |
| 9/23/2008 | 0.04                    | 0.04                    | 100.0%                |
| 9/29/2008 | 0.15                    | 0.11                    | 73.3%                 |

| 0.12  | 0.09                           | 75.0%                                       |
|-------|--------------------------------|---------------------------------------------|
| 0.06  | 0.06                           | 100.0%                                      |
| 0.07  | 0.05                           | 71,4%                                       |
| 0.083 | 0.069                          | 86.5%                                       |
| 0.038 | 0.024                          | 0.134                                       |
| 0.070 | 0.060                          | 85.7%                                       |
|       | 0.06<br>0.07<br>0.083<br>0.038 | 0.06 0.06 0.05 0.05 0.083 0.069 0.038 0.024 |

### Site #4: Munn Lake Drain @ CR 388

| Date                       | Total Phosphorus (mg/L) | Ortho Phosphorus (mg/L) | % Ortho<br>Phosphorus |
|----------------------------|-------------------------|-------------------------|-----------------------|
| 9/2/2008                   | NA                      | NA                      | NA                    |
| 9/11/2008                  | 1.40                    | 0.43                    | 30.7%                 |
| 9/18/2008                  | 0.19                    | 0.19                    | 100.0%                |
| 9/23/2008                  | 0.19                    | 0.19                    | 100.0%                |
| 9/29/2008                  | 0.24                    | 0.19                    | 79.2%                 |
| 10/7/2008                  | 0.36                    | 0.28                    | 77.8%                 |
| 10/14/2008                 | 0.25                    | 0.30                    | 120.0%                |
| 10/22/2008                 | 0.18                    | 0.14                    | 77.8%                 |
| Average                    | 0.401                   | 0.246                   | 83.6%                 |
| Standard Deviation (STDEV) | 0.445                   | 0.099                   | 0.281                 |
| Median                     | 0.240                   | 0.190                   | 79.2%                 |

This site had the highest average of both total and ortho phosphorus. One sampling event, on 9/11/08, had a very high result. Field notes indicate that there was low water at this site at that time. Thus, the high result could be a due to the release of phosphorus from the stream sediments, triggered by the likely low dissolved oxygen content of stagnant water. When dissolved oxygen levels are less than 1mg/L, iron and manganese hydroxides that bind phosphorus to sediments are reduced (Joe Rathbun, personal communication, 4/17/09). However, even if that sampling event is discounted, the average total phosphorus concentration of the remaining sampling events is 0.235 mg/L, still the highest of all ten sites.

| Date                       | Total Phosphorus (mg/L) | Ortho Phosphorus (mg/L) | % Ortho<br>Phosphorus |
|----------------------------|-------------------------|-------------------------|-----------------------|
| 9/2/2008                   | 0.28                    | 0.25                    | 89.3%                 |
| 9/11/2008                  | 0.11                    | 0.10                    | 90.9%                 |
| 9/18/2008                  | 0.16                    | 0.14                    | 87.5%                 |
| 9/23/2008                  | 0.10                    | 0.10                    | 100.0%                |
| 9/29/2008                  | 0.21                    | 0.07                    | 33.3%                 |
| 10/7/2008                  | 0.18                    | 0.14                    | 77.8%                 |
| 10/14/2008                 | 0.15                    | 0.13                    | 86.7%                 |
| 10/22/2008                 | 0.29                    | 0.28                    | 96.6%                 |
| Average                    | 0.185                   | 0.151                   | 82.8%                 |
| Standard Deviation (STDEV) | 0.071                   | 0.075                   | 0.211                 |
| Median                     | 0.170                   | 0.135                   | 88.4%                 |
|                            |                         |                         |                       |

Site #5: Mill Lake Drain (just upstream of Remington & Powers Drain)

| Date                       | Total Phosphorus (mg/L) | Ortho Phosphorus (mg/L) | % Ortho<br>Phosphorus |
|----------------------------|-------------------------|-------------------------|-----------------------|
| 9/2/2008                   | 0.14                    | 0.10                    | 71.4%                 |
| 9/11/2008                  | 0.03                    | 0.01                    | 33.3%                 |
| 9/18/2008                  | 0.20                    | 0.19                    | 95.0%                 |
| 9/23/2008                  | 0.13                    | 0.13                    | 100.0%                |
| 9/29/2008                  | 0.18                    | 0.07                    | 38,9%                 |
| 10/7/2008                  | 0.12                    | 0.10                    | 83.3%                 |
| 10/14/2008                 | 0.04                    | 0.08                    | 200.0%                |
| 10/22/2008                 | 0.05                    | 0.05                    | 100.0%                |
| Average                    | 0.111                   | 0.091                   | 90.2%                 |
| Standard Deviation (STDEV) | 0.065                   | 0.054                   | 0.515                 |
| Median                     | 0.125                   | 0.090                   | 89.2%                 |

## Site #6: Remington & Powers Drain @ CR 388

Site #7: Haven Drain @ 41st St.

| Date                       | Total Phosphorus (mg/L) | Ortho Phosphorus (mg/L) | % Ortho<br>Phosphorus |
|----------------------------|-------------------------|-------------------------|-----------------------|
| 9/2/2008                   | 0.13                    | 0.08                    | 61.5%                 |
| 9/11/2008                  | 0.04                    | 0.03                    | 75.0%                 |
| 9/18/2008                  | 0.14                    | 0.12                    | 85.7%                 |
| 9/23/2008                  | 0.08                    | 0.08                    | 100.0%                |
| 9/29/2008                  | 0.10                    | 0.06                    | 60.0%                 |
| 10/7/2008                  | 0.14                    | 0.12                    | 85.7%                 |
| 10/14/2008                 | 0.06                    | 0.05                    | 83.3%                 |
| 10/22/2008                 | 0.05                    | 0.05                    | 100.0%                |
| Average                    | 0.093                   | 0.074                   | 81.4%                 |
| Standard Deviation (STDEV) | 0.041                   | 0.033                   | 0.152                 |
| Median                     | 0.090                   | 0.070                   | 84.5%                 |
|                            |                         |                         |                       |

Site #8: Haven Drain @ Bloomingdale sewage lagoons

| Total Phosphorus (mg/L) | Ortho Phosphorus (mg/L)                              | % Ortho<br>Phosphorus                                                                                                                                                                     |
|-------------------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.09                    | 0.07                                                 | 77.8%                                                                                                                                                                                     |
| 0.04                    | 0.03                                                 | 75.0%                                                                                                                                                                                     |
| 0.15                    | 0.13                                                 | 86.7%                                                                                                                                                                                     |
| 0.12                    | 0.09                                                 | 75.0%                                                                                                                                                                                     |
| 0.07                    | 0.05                                                 | 71.4%                                                                                                                                                                                     |
| 0.11                    | 0.10                                                 | 90.9%                                                                                                                                                                                     |
| 0.06                    | 0.05                                                 | 83.3%                                                                                                                                                                                     |
| 0.04                    | 0.03                                                 | 75.0%                                                                                                                                                                                     |
|                         | 0.09<br>0.04<br>0.15<br>0.12<br>0.07<br>0.11<br>0.06 | 0.09         0.07           0.04         0.03           0.15         0.13           0.12         0.09           0.07         0.05           0.11         0.10           0.06         0.05 |

| Average                    | 0.085 | 0.069 | 79.4% |
|----------------------------|-------|-------|-------|
| Standard Deviation (STDEV) | 0.040 | 0.036 | 0.068 |
| Median                     | 0.080 | 0.060 | 76.4% |

## Site #9: Haven Drain @ 45th St.

| Date                       | Total Phosphorus (mg/L) | Ortho Phosphorus (mg/L) | % Ortho<br>Phosphorus |
|----------------------------|-------------------------|-------------------------|-----------------------|
| 9/2/2008                   | 0.11                    | 0.07                    | 63.6%                 |
| 9/11/2008                  | 0.08                    | 0.06                    | 75.0%                 |
| 9/18/2008                  | 0.16                    | 0.14                    | 87.5%                 |
| 9/23/2008                  | 0.10                    | 0.09                    | 90.0%                 |
| 9/29/2008                  | 0.08                    | 0.06                    | 75.0%                 |
| 10/7/2008                  | 0.11                    | 0.10                    | 90.9%                 |
| 10/14/2008                 | 0.09                    | 0.06                    | 66.7%                 |
| 10/22/2008                 | 0.05                    | 0.05                    | 100.0%                |
| Average                    | 0.098                   | 0.079                   | 81.1%                 |
| Standard Deviation (STDEV) | 0.032                   | 0.030                   | 0,129                 |
| Median                     | 0.095                   | 0.065                   | 81.3%                 |

### Site #10: Great Bear Lake Drain @ 46 1/2 St.

| Date                       | Total Phosphorus (mg/L) | Ortho Phosphorus (mg/L) | % Ortho<br>Phosphorus |
|----------------------------|-------------------------|-------------------------|-----------------------|
| 9/2/2008                   | 0.04                    | 0.04                    | 100.0%                |
| 9/11/2008                  | 0.02                    | 0.01                    | 50,0%                 |
| 9/18/2008                  | 0.09                    | 0.08                    | 88,9%                 |
| 9/23/2008                  | 0.04                    | 0.03                    | 75.0%                 |
| 9/29/2008                  | 0.04                    | 0.01                    | 25.0%                 |
| 10/7/2008                  | 0.05                    | 0.05                    | 100.0%                |
| 10/14/2008                 | 0.04                    | 0.00                    | 0.0%                  |
| 10/22/2008                 | 0.02                    | 0.02                    | 100.0%                |
| Average                    | 0.043                   | 0.030                   | 67.4%                 |
| Standard Deviation (STDEV) | 0.022                   | 0.026                   | 0.385                 |
| Median                     | 0.040                   | 0.025                   | 81.9%                 |

### Precision

Field duplicate samples (1 per survey) were collected to assess sample collection consistency and data precision, and the results demonstrated that the results are acceptable precise. All of the samples with a relative percent difference (RPD) of over 20% were samples with very low concentrations (less than 0.05 mg/L, with the exception of the 9/2/08 sampling date which had concentrations of 0.14 mg/L total phosphorus and 0.10 mg/L ortho phosphorus in the investigative sample). Samples that are closer to the detection limit of 0.01 mg/L are more likely to have less precision.

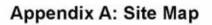
| Relative percent difference between investigative sample | nd duplicate same | ple: |
|----------------------------------------------------------|-------------------|------|
|----------------------------------------------------------|-------------------|------|

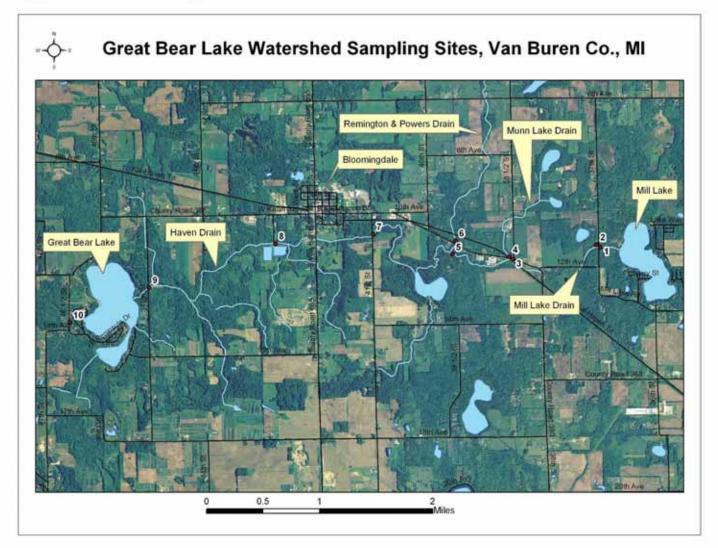
|                  | 9/2/08 | 9/11/08 | 9/18/08 | 9/23/08 | 9/29/08 | 10/7/08 | 10/14/08 | 10/22/08 |
|------------------|--------|---------|---------|---------|---------|---------|----------|----------|
| Total Phosphorus | 24.00% | 22.22%  | 0.00%   | 0.00%   | 200.00% | 22.22%  | 0.00%    | 7.14%    |
| Ortho Phosphorus | 35.29% | 50.00%  | 0.00%   | 0.00%   | 200.00% | 22 22%  | 100.00%  | 0.00%    |

### Discussion

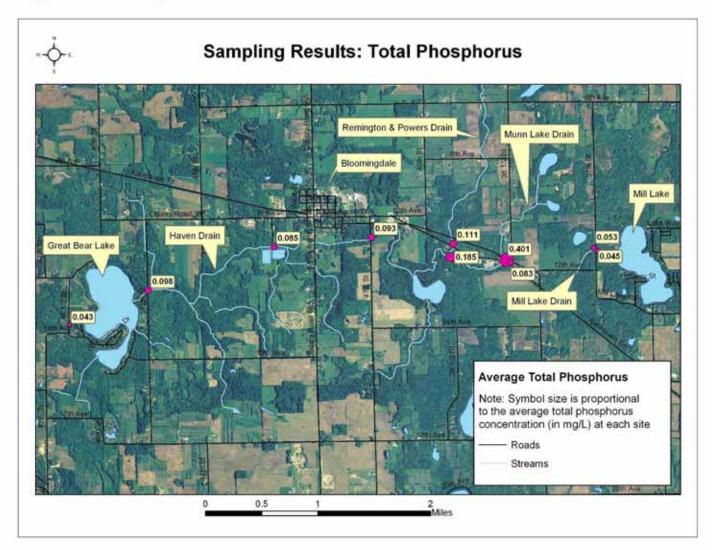
As shown above, several of the sampling events were beyond the precision level outlined in the QAPP. However, because phosphorus concentrations were so low and close to the detection limit, it was decided that all samples would be included in the final analysis.

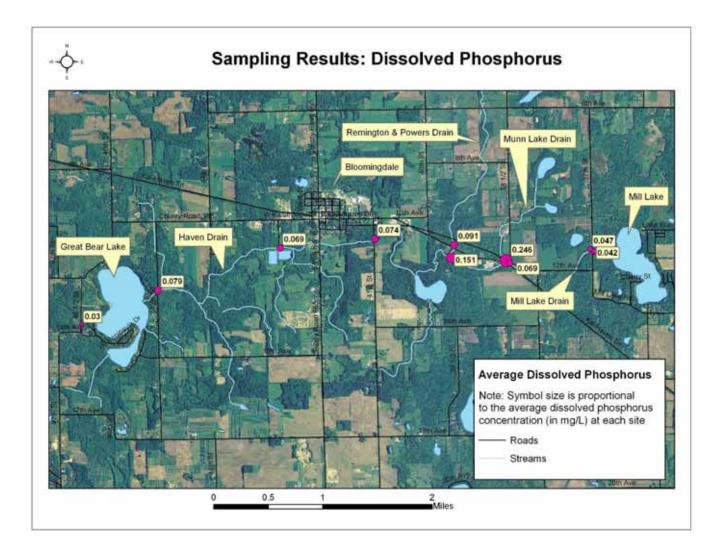
A significant rain event occurred before the 9/18 sampling event. Approximately 7.12 inches fell in the area on September 12, 13, 14 and 15. This may account for some sites having higher phosphorus readings on the 9/18 sampling events.


Seven of the ten sites that were sampled had a total phosphorus amount that is higher than the reference stream number for total phosphorus for streams in the Southern Michigan/Northern Indiana Till Plain Ecoregion (0.058 mg/L) (MDNR 1994). Reference streams are considered to be minimally affected by human-induced impacts. The seven sites with total phosphorus amounts higher than the reference stream number were 3, 4, 5, 6, 7, 8, and 9. Two sites, 4 and 5, had average total phosphorus numbers of more than twice the reference stream number. Appendix B contains maps that display the sampling results. These results appear to indicate that the primary source of phosphorus in this watershed may be coming from the Munn Lake Drain, Great Bear Lake appears to be a sink for phosphorus, removing an average of 56% of the total phosphorus and 66% of the ortho phosphorus in this study.


In all sites, the majority of phosphorus appears to be in the form of ortho phosphorus, or dissolved phosphorus (values of ortho phosphorus as a percentage of total phosphorus ranged from an average of 67.4% to 95.2%). This indicates that the source of phosphorus is primarily fertilizers, detergents, septic systems or liquid animal waste as opposed to applied manure or sediment particles from erosion. Dissolved phosphorus is readily available for biological uptake, and can cause an overgrowth of aquatic plants and algae.

Joe Rathbun (MDEQ) applied power analysis statistics to the data to determine the number of samples needed to detect a 50% change in phosphorus concentration with a 95% confidence interval. The predicted sample size (n) ranged from 2 to 19, and was generally less than 10. When the high value at station 4 on 9/11/08 is eliminated, the sample size needed ranged from 2 to 13. See Appendix C for the full results of this analysis.


# References


Michigan Department of Natural Resources (MDNR) 1994. Reference Site Monitoring Report (1992-1993). MDNR Surface Water Quality Division. Report # MI/DNR/SWQ-94/048





# Appendix B: Map of Results





# Appendix C: Phosphorus Data Power Analysis

### 2008 Great Bear Lake Phosphorus Data Power Analysis

(Predicted n = the number of samples to collect in the future to be 95% confident of detecting a 50% change in P concentration)

| <b>Total Phospho</b> | rus   |       |       |       |           |       |       |       |       |       |       |
|----------------------|-------|-------|-------|-------|-----------|-------|-------|-------|-------|-------|-------|
| Station              | 1     | 2     | 3     | 4     | 4 (-9/11) | 5     | 6     | 7     | 8     | 9     | 10    |
| n                    | 6     | 6     | 7     | 7     | 6         | 8     | 8     | 8     | 8     | 8     | 8     |
| t                    | 2.571 | 2.571 | 2.447 | 2.447 | 2.571     | 2.365 | 2.365 | 2.365 | 2.365 | 2.365 | 2.365 |
| Std dev              | 31    | 29    | 38    | 401   | 68        | 71    | 65    | 41    | 40    | 32    | 22    |
| d                    | 0.5   | 0.5   | 0.5   | 0.5   | 0.5       | 0.5   | 0.5   | 0.5   | 0.5   | 0.5   | 0.5   |
| Mean (µg/L)          | 45    | 53    | 83    | 445   | 235       | 185   | 111   | 93    | 85    | 98    | 43    |
| Predicted n          | 13    | 8     | 5     | 19    | 2         | 3     | 8     | 4     | 5     | 2     | 6     |
| Ortho Phospho        | orus  |       |       |       |           |       |       |       |       |       |       |
| Station              | 1     | 2     | 3     | 4     | 4 (-9/11) | 5     | 6     | 7     | 8     | 9     | 10    |
| n                    | 6     | 6     | 7     | 7     | 6         | 8     | 8     | 8     | 8     | 8     | 8     |
| t                    | 2.571 | 2.571 | 2.447 | 2.447 | 2.571     | 2.365 | 2.365 | 2.365 | 2.365 | 2.365 | 2.365 |
| Std dev              | 29    | 23    | 24    | 99    | 62        | 75    | 54    | 33    | 36    | 30    | 26    |
| d                    | 0.5   | 0.5   | 0.5   | 0.5   | 0.5       | 0.5   | 0.5   | 0.5   | 0.5   | 0.5   | 0.5   |
| Mean (µg/L)          | 42    | 47    | 69    | 246   | 215       | 151   | 91    | 74    | 69    | 79    | 30    |
|                      |       | 6     | 3     | -     | 2         | 6     | 8     | 4     | 6     | 3     | 17    |

| n(est) | #   | estimated sample size |  |
|--------|-----|-----------------------|--|
|        | = ) | -                     |  |
|        | =   |                       |  |
| 0      | =   |                       |  |
| ×      | =   | sample average        |  |